
QUAL-· Itf·' M·.·--., ·w· ·E···~-·m·~ .. /·,K-. . : ~ 1P~ :1:.. ~i;... . . ' i_ •• :_~ ~ :.. • ...

,,.. . ~ ~ . ki :. ./- :, l~ ..

May 11 - 13, 1988

San Francisco, California

(?~ [r))
~~~ Software Research, Inc. 



0 

0 

o-

Robert Poston 

Programming Environments, Inc. 
Tinton Falls, New Jersey 

Topic: Automatic Test Case Generation from Requirements 

Robert Poston became founder and president of PEI in 1981, after 20 years in the 
electronics and computer industries. He has been honored by U.S. Marine Corps, 
Honeywell Corporation, ITT, and General Electric Company for outstanding service. 
Mr. Poston holds a B.S.E.E. from California Poltytech and has 30 publications and 
eight international seminars to his credit. An honored member of IEEE, he serves as 
Chairman of Task Force for Professional Computing Tools, Program Committee 
Coordinator of the Computer Standards Conference, and has been a member of the 
Editorial Board since 1984. Mr. Poston also served as Technical Director of IEEE 
Seminars from 1981-1984. 

_QW 

~~ 



0 

0 

0 

John C. Kelly 

Jet Propulsion Laboratory 
Pasadena, California 

Topic: Formal Inspection Methods 

John Kelly is a technical staff member in the Software Product Assurance Section at 
NASA's Jet Propulsion Laboratory in Pasadena, California. His current task is the 
technology transfer and coordination of formal software inspections at JPL 

Dr. Kelly worked in the Florida Dept. of Transportation in 1972-73 as a statistician. 
During graduate school he worked with the center for educational technology at 
FSU, developing software for the CDC Plato System. Dr. Kelly has served on the 
faculties of Albany Junior College as Assistant Professor of Mathematics, and 
Furman University in the Dept. of Computer Science. Dr. Kelly received his B.S., 
M.S., and Ph.D. degrees in Mathematics and Mathematics Education from Florida 
State Unversity. 



0 0 

Formal Inspections 

Quality Week 
May 12, 1988 

San Francisco, CA 

John C. Kelly, Ph.D. 

Software Product Assurance 
Section 515, MS 301-476 
Jet Propulsion Laboratory 

Pasadena,CA 91109 
ph. (818)-354-4495 

0 



0 

Contents 

0 The Problem 

• Formal Inspections and the Software Lifecycle 

• What are Formal Inspections? 

• Data Reported from Formal Inspections 

0 Benefits 

SOFTWARE PRODUCT ASSURANCE 

0 

JCK:1 



0 

JPIL.. 

0 

The Problem 

"The cost of reworking errors in programs becomes 
higher the later they are reworked in the process, so 
every attempt should be made to find and fix errors 
as early in the process as possible." 

--Michael Fagan, 1976 

SOFlWARE PRODUCT ASSURANCE 

0 

JCK:2 



0 0 

...UPL Relative Cost to find and IF ix Defects 
When They Are Caught at Different 

Development Stages 

100 

80 

0 ... 60 ·-C 
::, ... 
0 40 0 
(..) 

20 

0 

Source: Fagan & Remus, reported in Gilb, 1987 

SOFTWARE PRODUCT ASSURANCE 

During Before 
Design Code 

,:,,, .. ,, 
"!l' , 

~~ 
0, • ~ 

:- ~ ::_ir.i.i 

u 
¥ 

Before During 
Test Test 

~, ... 
M .. 

w 

.. ~ 

• "-=I!!· 
t.,"'i"'-'~ 1 
., C 
·!'l! .. ,11, 

/.a. ,, ~~ 
ii<,i Q ~ 

•.lb 
~ 

, 
H • 

{4Ji1). ,, ~ 
iJ '). " 

In 
Production 

0 

JCK:3 



0 

JPL 

1000 

500 

200 

100 

50 

20 

10 

5 

2 

0 

Relative Cost to Locate and Fix Defects 
at Each Phase of the Life Cycle 

Larger Software Projects 

s t IBM-SSD 

n l GTE 

0 

80% 

Median (TRW Survey) 

20% 

m.,,,..,n 

m SAFEGUARD 

Smaller Software Projects 

~(Boehm, 1980) 

Requirements Design Code Development Acceptance Operation 

Source: Boehm, 1981 

SOFTWARE PRODUCT ASSURANCE 

Te~t Test 

Solid Line: Combined Linear Regression Line for Large Projects 
Dotted Line: Small Projects 

0 

JCK:4 



0 
JIPL 

Subsystem 
Functional 

Design 

Software 
Requirements 

SYMBOLS 

The 

Software 
Architectural 

Design 

One Defect Detection Step 

SOFTWA RE PflODUCT ASSUFlANCE 

0 
Software Development 

Software 
Detailed 
Design 

Software 
Code 

0 
Cycle 

JCK:5 



0 

Typical Example of Defect Injection 
and Removal 

~Assume 60 Defects Escape pre-Test phases for Every K 
Lines Written 

o Assume Test Steps Are Each 50% Efficient 

SOFTWARE PRODUCT ASSURANCE 

0 

JCK:6 



0 0 
JPL The Software Quality With Test Only 

Subsystem 
Functional 

Design 

Software 
Requirements 

SYMBOLS 

Software 
Architectural 

Design 

L. One Defect Detection Step 

SOFTWAnE PRODUCT ASSURANCE 

Defects/KDSI) 

Software 
Detailed 
Design 

Soltware 
Code 

60 

Detection Steps: 
50% Efficient Each 

Number of error In 
delivered product per KDSI 

~5 

JCK·7 

0 



0 

The Same Example With 
Formal Inspections 

• Insert inspections into the pre-test phases 

0 

i} The strategy is to find and fix defects when and 
where they are injected 

0 Now have 9 detection steps instead. of 4 

SOFTWARE: PRODUCT ASSURANCE JCK:8 



0 
JlPL 

Subsystem 
Functlonal 

Design 

Software 
Requirement• 

SYMBOLS 

0 
The Software Development Cycle 

With Inspections 

Software 
Archltectural . 

Design 

Software 
Detailed 
Design 

Software 
Code 

6 = One Defect Detection Step 

SOFTWARE PRODUCT ASSURANCE 

0 

JCK:9 



0 

Must make two assumptions: 

1) How escaping defects are spread 
across phases 

(use 5, 5, 10, 20, 20) 

2) Inspection efficiency 
(use 50% - conservative) 

0 

SOFlVVARE PRODUCT ASSURANCE JCK: 1 o 



0 
JPL 

Subsystem 
Functional 

Design 
(5) 

Software 
2.5 Requirements 

--- (5) 

SYMBOLS 

0 
The 

With 
Software Development 

Formal Inspections 

Software 
Architectural 

Design 
(10) 

60 Defects/KDSI 
5, 5, 10, 20, and 20 respectlvely 

7 

Software 
Detailed 
Design 
(20) 

13.5 

Software 
Code 

(20) 

Cycle 

6. = One Defect Detection Step 
Number of Errors In 

delivered product per KDSI 

SOFlWA flE PRODUCT ASSURANCE 

0 

2.1 

JCK·11 



0 

.JJPL 

0 

Test Related Inspections 

Test lnspect~ons (IT1 and IT2) help produce high 
quality test cases 

Result is to increase efficiency of test phases 

SOFTWARE PRODUCT ASSURANCE 

0 

JCK:12 



0 
.JPL 

Subsystem 
Functlonal 

Design 

Software 
Requirements 

SYMBOLS 

0 

The Software Development Cycle 
With Added Test Inspections 

.,__ _____ -H; 

Software 
Architectural 

Design 

Software 
Detalled 
Design 

Software 
Code 

Improved Efficiency 

During Test Phase 

(greater than 50%) 

One Defect Detection Step 

SOFTW/\RE PRODUCT ASSURANCE 

Note: A greater savings is due to 
reduction in Defect Amplification 

0 

JCK:13 



0 

.JIPL 

0 

DIFFERENCES 

1 . Occur 

2. Configuration 
management 

3. Size of review 
material 

4. Attendees 

5. Purpose 

FORMAL INSPECTIONS 

Inside P.hases 

Internal 

Small 

Small group 
(invitation only, 
assigned roles, 
no managers) 

Find and fix 
defects early 

*For more information see 
"Guidelines for Planning and 
Conducting Formal Reviews." 

Source: JP-L D-363, Rev. D, March 1987 

SOFTWARE PRODUCT ASSURANCE 

MILESTONE REVIEW* 

Between phase 

Baselined 

Large 

Large group (open) 

Product conformance with 
requirements & stds. 
Place products under 
configuration mngmt. 
Validate conformance 
with schedule and 
resource constraints. 

JCK:14 

0 



0 0 0 

.Jl~L Formal Inspections Are "In-Process" IReviews 

Work 
Products 

Sourc:e: J. Kelly, 1987 

SOFTVJAREPRODUCTASSURANCE 

Phase 

Formal 
Inspections 

Inspection 
Certified 

Work Products 

JCK:15 



0 

..JIIPL 

0 

What are Formal ~nspections? 

(contents) 

0 Objective 

°ம� Formal Inspections vs. Walkthroughs 

• Description of Formal Inspections 

- Phases 
- Participant Roles 
- Types of Inspections 
- Basic Rules 

SOFlWARE PRODUCT ASSURANCE 

0 

JCK:16 



0 

.JIPL 

0 

Primary Objective 
of Formal Inspections 

Remove Defects As Early As Possible 

in the Development Process 

Formal inspections achieve this objective by:. 

• Identifying potential defects during individual preparation 

@ Verifying that identified items are actual defects 

<JJ Recording the existence of defects 

<i Providing the author with a list of defects to fix 

• .Ensuring that fixes are performed and correct 

0 

SOFTWARE PRODUCT ASSURANCE JCK:17 



0 0 0 

.JJPlL Differences between Formal Inspections 
and Walk-throughs 

Properties Inspection Walk-through 

1 . Formal moderator training Yes No 
2. Definite participant roles Yes No 
3. Who "drives" the inspection Moderator Author 
4. Use "How to find errors" Yes No 

checklists 
5. Use distribution of defects Yes No 
6. Follow-up to reduce bad fixes Yes No 
7. Less future errors because of Yes Incidental 

detailed error feedback to 
individual programmer 

8. Improve inspection efficiency Yes No 
from analysis of results 

Source: Fagan 1976 

SOFTWARE PRODUCT ASSURANCE JCK:18 



0 
JIPL 

PLANNING 

~~~ 

~

•
lnapectlon
Announce­
ment

Source: J Kelly, 1987

SOFTWAnE PRODUCT ASSURANCE

0

Formal Inspection Process

OVERVIEW

~ ~
~
~ -+

PREPARATION

~
~

Individually

' Individual
Preparation
Loge

!
Detailed
lnapecllon
Report

~

INSPECTION

~
~
~
~

~
I

THIRD HOUR

~
~
~
~

(optional)

1
lnapecllon
Delaet
Llet

REWORK

~

H",>

-
FOLLOW-UP

~
~

0

-+ ~ ~

•
lnapectlon
Summary
Raport

SYWBa..S

= PROCESS STAGE

= PERSON

= STAGE TRANSITION

o-~
JCK:19

0 0 0

..JPlL Primary Objectives by Stages

Process Stage

1 . Planning

2. Overview

3. Preparation

4. Inspection

5. Third hour

6. Rework

7. Follow-up

Source: Fagan 1976, Gilb 1987

SOFTWARE PRODUCT ASSURANCE

Objective

Coordinate Inspection

Education

Find errors/Education

Find errors

Discuss solutions and
resolve discrepancies

Fix Problems

Ensure all fixes are
correctly made

Parti ci pa nt(s)

Moderator

Group

Individual (all)

Group

Group

Author

Moderator &
Author

JCK:20

0

JPL

SOFlWAREPRODUCTASSURANCE

0

Roles in formal inspections

Q Moderator

G> Author

Q Reader

o Recorder

o Other Inspectors

0

JCK:21

0

JPL

0

Types Formal Inspections

RO Functional Design Inspection

R1 Software Requirements Inspection

0 10 Architectural Design Inspection

I 1 Detailed Design Inspection

12 Source Code Inspection

IT1 Test Plan Inspection

e IT2 Test Procedures & Functions Inspection

SOFlWAREPRODUCTASSURANCE

0

JCK:22

0

..JPL

0

Basic Rules for
Formal Inspections

Inspections are carried out at a number of points
inside designated phases of the software life cycle.

Only technical documents and code are inspected.

o Inspections are carried out by peers representing
the areas of the life cycle affected by the material being
inspected (usually limited to 6 or less people).

Management is not present during inspections.
Inspections are not to be used as a tool to evaluate
workers.

SOFlWARE PRODUCT ASSURANCE JCK:23

0

0

JPL

0

Basic IAules
(continued)

o Inspections are carried out in a prescribed series
of steps.

G> Inspection meetings are limited to two hours.

~ Inspections are led by a trained moderator.

G Inspectors are assigned specific roles.

SOFTWARE PRODUCT ASSURANCE

0

JCK:24

0

JPL

0

Basic Rules
(continued)

i) Checklists of questions are used to define the task
and to stimulate defect finding.

" Material is inspected at a particular rate which has
been found to give maximum error finding ability.

'- Statistics on number and types of defects are kept.

SOF1WARE PRODUCT ASSURANCE JCK:25

0

0 0 0

JPL. Product Error Rates*
Shuttle's Primary Avionics Software Systems (PASS)

_ (After Introduction of Formal Inspection)

30

2.5

2.0

~ :..;
~ ,_.
C>
0:::
15

1.0

* Number of Valid Discrepancy Reports Post Delivery per KSLOC
Source: K°'lkhorst, 1986

SOFTWARE PRODUCT ASSURANCE

D AC::TIJAL

l>~~, GOAL

JCK:26

0

More Results from Projects
Formal ~nspections

Project

AETNA Life and Casualty
4,439 LOC

IBM Respond, U.K.
6,271 LOC

Standard Bank of S. Africa
143,000 LOC

American Express
13,000 LOC

Source: Fagan 1986

SOFlWARE PRODUCT ASSURANCE

Defects/Productivity

0 Defects in use
25% reduction
development resource

O Defects in use
9% reduction cost
compared walk throughs

0.15 Defects/KLOC in use
95% reduction in corrective
maintenance cost

0.3 Defects/KLOC in use

0

JCK:27

0

Requirement of Formal Inspection

or Similar Techiniques. by the

JPL Software Management Standard

"Peer review or technical walk-throughs shall be held on a
regularly scheduled basis throughout the project/task"

--3.11.4, p. 3-26, JPL-D4000

Source: JPL D-4000

SOFTWJ\AEPRODUCTASSURANCE JCK:28

0

0 0 0

JPL Walk-throughs vs. Formal inspections
Comparison of two similar projects at iBM

Improved programming
technologies

Reviews

Number of statements

Total detail design, code and
test personnel

Dura11ion

Syste-m Test Errors
Pilot installation

Total defects

Coding rate
2

(LOC/Person
months)

Test error rate (Errors/KLOC)

Source: IBM Tech Report 1978

SOFlWAREPRODUCTASSURANCE

PROJECT X

Yes

Walk-throughs

10,000

64 person months

14 months

PRS

Yes

1
Inspections

6,250

41 person months

7 months

11 51'"
26 O (also O errors in first

6 months of operation)

77

155

7.7

11

153

1. 76

1. Design, source code and test plan Inspections only.
2. Includes time spent In design, code and test

(Including moderator's time for PAS). JCK:29

0

JPL

0

Benefits of f'ormal ~nspections
for

Software Development

• Improved quality

~ Contributes to project tracking

fi Improved communication between developers

Q Aids in the project education of personnel

o Cost savings through early fault detection and
correction

SOFlWARE PRODUCT ASSURANCE

0

JCK:30

0

0

0

Alka Shah

Bank of America
San Francisco, California

Topic: Is Certification Really Necessary?

Alka Shah has 15 years of experience in software development, 10 years of which has
been in software quality assurance. She took her M.B.A at British Tutorial
University in Kenya, Nairobi. Ms. Shah is currently Vice President in charge of
BankAmericard Member Project Management for Bank of America in San
Francisco. She is also President of the Bay Area Quality Assurance Association, a
member of the Board of Directors for ASTE, and a member of the Project
Management Institute.

o'

0

0

SOFTWARE
CERTIFICATION

copyright Alka Shah

0

0

0

TEST PROFESSIONALS

0 Test Manager

0 EDP Auditor

0 Senior Test Engineer

0 Test Engineer

0 Test Technician

0 System Assurance Engineer

copyright Alka Shah

0

0

0

W1hlat ii§ irealllly
J111eed.edl iirll

todlay 9
§ market ?

copyright Alka Shah

0

RlECOGNJ[TION

0 Experience

°ப� Certificate of Performance

0

0
copyright Alka Shah

or

network

universities

0
organizations

?
E)

0
copyright Alka Shah

0

0

0

GOVERNING BODY

GOVERNING
BODY

0 Define skill
assessment

0 Identify standards
& procedures for
testing.

0 Update materials periodically
with the progress and changes

copyright Al.lea Shah

0

0

0

TE§TING
0 The process of executing a program with

the intent of finding errors.

0 An activity which certifies that after
fallowing a set process, a product functions
as specified in:

- User Documentation
- Final Product Requirements
- Product Specifications

0 A method of identifying defects in software

0 To make sure that the product does not abend

etc.
etc.

copyright Alka Shah

0

0

0

TESTING:

WHAT ARE THE GOALS?

0 Requirements (specifications)

0 Zero Defect

0 Acceptable Quality Level

0 User Acceptance Criteria

°௉� Cost of Quality

(source: R. Robinson)

copyright Alka Shah

0

0

0

REQUIREMENTS I SPECIFICATIONS:

0 What is the requirement?

0 Is it adequately specific?

°ణ� Can it be quantified in some manner?

°ణ� Can the product be tested so as to
demonstrate the specification, or is it
an illusion?

0 What are the success criteria for each
requirement?

copyright All<a Shah

0

0

0

ZERO DEFECT:

0 Is this a real possibility or a dream?

0 What is a defect?

0 At what point is the measurement taken?

0 Does zero defect make business sense?

copyright Alka Shah

0

0

ACCEPT ABLE QUALITY LEVEL

0 Does the product fit within reasonable
tolerances?

0 How was "Reasonable" defined?

0 What is the cost of failure and debugging?

copyright Alka Shah

0

0

0

USER ACCEPTANCE CRITERIA

0 Who ultimately pays the bills / buys
the product?

0 What have they been promised?

0 What are their real expectations?
Reasonable?

0 What are their business risks?

0 What are their comfort zone with
system failure?

0 What will it take to get repeat business?

copyright Alka Shah

0

0

0

COST OF QUALITY

0 Quality is free, but is perfection worth the
price?

0 If the cost of quality is high, zero defect
is cheap

0 There is a place for quick and dirty, but
is this it?

0 How often does the end user get a real
say in how much testing?

copyright Alka Shah

0

TESTING:
KNOWLEDGE & TOOLS

0 Test Plan
0 Test Scripts
0 Test Tools
0 Incident Reports
0 Regression Testing

0 0 Risk Assessment
0 Implementation Test Specifications
0 Installation Verifications
0 Production Release Report
0 Performance Analysis
0 Performance Evaluation Report

0
copyright Alka Shah

0
CONTENTS OF A TEST PLAN

1. Introduction / Overview
2. PrajectFunction~ity
3. Objectives of Test
4. Completion Criteria
5. Schedules
6. Resources
7. Responsibility by Phase

0
8. Tools
9. Integration
10. Tracking Procedures, CM &

Problem Reports
11. Pass / Fail Criteria
12. Risk / Contingencies
13. Training
14. Test Cases

0
copyright .Alka Shah

0

0

0

QUICK & DIRTY TEST PLANS

0 Limited time to write a test plan prior to
starting the test.

0 Goal is to provide a testing framework to
conduct current tests.

0 Approach
1. Review document set
2. Write boilerplate section of the plan

(General sections required by company)
3. Outline tests that must be done
4. Write test cases for initial test set
5. Make initial schedule estimates
6. Expand minimum test set using project

documentation
7. Write additional test cases

(source: Guy Jenkins)

copyright Alka Shah

0

0

0

IS§TIJE§

0 Testing Importance

0 How to Control Testing Cost

0 Reduce Maintenance Cost

copyright Alka Shah

0

0

0

WHAT ARE SOME OF THE
CHARACTERISTICS

A USER LOOKS FOR IN
SOFTWARE

0 Usability (friendliness)

0 Reliability

0 Maintainability

0 Integrity

°ྖ� Flexibility

copyright Alica Shah

0

0

0

CHARACTERISTICS

0 Usability

0 Reliability

0 Maintainability

0 Integrity

°ே� Flexibility

Operability
Training

Error Tolerance
Consistency
Accuracy
Simplicity

Consistency

Access Control
Access Audit

Modularity
Generality
Expendability

copyright Alka Shah

0

0

0

CONCEPTS OF TESTING

0 Top down testing

0 Bottom up testing

0 Integration testing

0 Big bang testing

0 White box testing (unit testing)

0 Black box testing

copyright All<a Shah

0

0

0

ClER 1r]JFI CA 1rJI ON
JREQ 1UJIREMEN1r

0 Experience

0 References

°୲� Course I Examination

copyright Alka Shah

0

0

0

RlE-CER'fIFJICA 'fION

0

0

Is it necessary?

Benefits:

Candidates gains latest knowledge
Organization benefits by continuing
membership
Greater recognition in the D P
environment

copyright Alka Shah

0

GRAND
C , - ' ; ' ; 1 1. l: ® §6f2 tit$ I

0
FATIBIERI[NG

i :srw 1 !S eh t, ;na s '· t' 5 t3 M ,w !kl!# •4• I

0
copyright All<a Shah

0

0

\

William G. Bently

Miles, Inc.
Mishawaka, Indiana

Topic: Automated Software Testing: Advanced Technologies

William Bently is in charge of the data management R&D group at Miles, Inc. This
group develops high-quality medical software rroducts for diabetes care and
urinalysis. Previoqs to entering the biomedica computer field six years ago,
Mr. Bently headed a small R&D group which developed realtime software. His
multi-disciplinary interests are evident in his educational background: a B.A. in
mathematics from Oberlin College and an M.S. in biology from Ball State University.

Q

0

0

PATH TESTING MAY 12, 1988

AUTOMATED SOFTWARE TESTING:
ADVANCED TECHNOLOGIES

W.G. Bently

OVERVIEW

This paper addresses a specific automated software
testing technology; path testing. Several proposed
strategies will be reviewed and a new method, Ct with
K=l coverage, will be presented. This concept was
developed by Edward Miller at Software Research, Inc.
and is being employed experimentally in analyzing a
27,000 line C program developed at Miles, Inc. The
viewpoint expressed in this paper will be that of a
practitioner.

THE NEED FOR A THEORY OF PROGRAM BEHAVIOR

A thorough test of a program would elicit its behavior
over the entire input. space. In practice, we are
constrained to small samples of the input space. The
ideal solution to this problem would be to develop a
method for the selection of a sample that would be
necessary and sufficient for proving the program has no
errors; i.e. equivalent to an exhau_sti ve test. The
methods discussed in this paper are not sufficient
(Goodenough 1975), but they can be seen to be
intuitively necessary, and hopefully will help move the
technology closer to the ultimate goal of sufficiency.

Succession of metrics
FIGURE 1

In order to know how much program behavior has been
observed, it will be necessary to develop a theory of
program behavior. An analogy with algorithm design will
i 11 ustrate the need for such a theory. Humans design
algorithms on the basis of a few cases, and often use
partial execution to refine the algorithm (Kant 1985).

page 1

0

0

-0

PATH TESTING

Algorithm development
FIGURE 2

MAY 12, 1988

After the algorithm is implemented as code, the testing
staff may add a few more cases. But how many test cases
are necessary? How many are sufficient?

Algorithm testing
FIGURE 3

THE NEED FOR A SCIENCE OF SOFTWARE TESTING

Science is based on measurement. We need instruments
that quantify the software behavior observed; automated
instruments that can be uniformly applied during the
testing process. The intuition and experience of the
practitioner are fallable, and become less useful as
programs become larger and more complex. On the other
hand, intuition and experience can serve as a valuable
guide in the development of automated tools that great~y
extend our capabilities of observing and measuring
program behavior.

One such instrument is TCAT, a product of Software
Research, Inc., which yields a branch coverage metric.
The Cl coverage metric is based on the notion that it is
necessary, during testing, to exercise each decision
branch within the program at least once. TCAT has
proven to be a practical and productive tool during the
testing of all Miles' data management software products.
The primary purpose of branch coverage has been the
identification of missing test cases. The coverage
concept has also proven to be valuable as a guide during
the walkthroughs that preceed writing of test harnesses.

Cl is necessary, but not sufficient. A simple program
consisting of two decisions may be used to illustrate
this point.

Exercising the paths;

Eg. 1 - Digraph
FIGURE 4

page 2

0

0

-0

PATH TESTING

a b d e g
a C d f g

MAY 12, 1988

yields 10 0 % Cl coverage.
paths;

Yet errors may occur in the

a b d f g
a c d e g

The path testing methods discussed in this paper
represent various ways of addressing this notion that it
is necessary to test a set of paths that is larger
and more diverse than a typical Cl cover.

REVIEW OF TESTING THEORIES

Ultimately, we are testing the correspondence between
intended program behavior and actual program behavior.
Testing theories are based upon different sources of
information on intended and actual program behavior.
Functional testing is based on specifications, whereas
structural testing is based on program implementation.

Structural methods are more easily automated, and lead
to an interactive style of testing. These methods
elicit program behavior under controlled conditions,
allowing the tester to observe the behavior and compare
it with expected results. Th is process of ten "draws
out" of the human mind information regarding the program
that is difficult, if not impossible to capture in the
form of rigorous specifications. Structural test
methods are divided into two categories; those based
on data flow and those based on control flow.

Testing theories
FIGURE 5

In this paper, the focus will be on control flow.
Although control flow methods are not sufficient,
they are necessary. On a deeper level, control flow
methods are intimately related to program proofs (Howden
1976}.

This does not mean that control flow should be used
exclusively. Each testing strategy has been found to
be effective in discovering different classes of errors.

page 3

0

0

~o

PATH TESTING MAY 12, 1988

For this reason, the different strategies should be
viewed as complementary rather than competing {Woodward
1986).

PATH TESTING IS THE NEXT LOGICAL STEP

In figure 1, the coverage measures were listed in order
of increasing effectivity. The state-of-the-art is
currently somewhere between branch, which is routine
practice in some shops, and full path, which is
impossible. Path testing is significantly better than
branch testing {Howden 1976) , and is the ref ore worth
pursuing.

LIMITATIONS OF PATH TESTING

Path testing shares all the insufficiencies of control
flow testing, such as the inability to reveal missing
functions. There are difficulties related to path
testing {Howden 1987);

1. A fault may require that a path be iterated
a large number of times.

2. A fault may require a complex pattern of path
iteration in two or more loops.

3. There may be infeasible paths. {An infeasible
path contains contradictory conditions and is
therefore not executable. These are difficult
to find, since the conditionals may depend on
the changing values of variables in a complex
way.)

4. There may be too many paths to test, even after
eliminating infeasible paths. The number of
paths is potentially infinite due to the
presence of loops.

PATH SELECTION

Out of the potential infinity of paths, what constitutes
an effec_tive sample? Investigators have suggested a
variety of methods that constrain the set of paths to be
examined.

page 4

0

0

PATH TESTING MAY 12, 1988

Path testing strategies
FIGURE 6

Some of these strategies are;

1.

2.

3.

BOUNDARY INTERIOR (Howden 1975) - A
classification is proposed based upon
the way a path traverses a loop. The
idea is to cover the boundaries by
minimal traversal and maximum traversal
of the loop.

LEVEL-i (Paige 1978) - Level-i paths
attempt to capture the notion of depth
of nesting of iterations. The level-i
paths will include a basis set of paths,
i.e. a set of paths such that any path
through the graph may be expressed as a
linear combination of paths in the basis
set.

Special path definitions
FIGURE 7

LCSAJs (Woodward 1984) - Woodward has
proposed several levels of coverage that
begin with the customary statement and
branch coverage. Higher levels are
based on LCSAJs and pairs of LCSAJs.
The LCSAJs for Example 1 (first introduced
in Figure 4) are listed in Figure 8.

LCSAJ cover
FIGURE 8

(Woodward 1984) has demonstrated that
LCSAJ testing is a reasonable next step
beyond branch testing, since the number
of added paths (beyond branch testing)
is fairly small.

Woodward 1984
FIGURE 9

page 5

0

0

PATH TESTING MAY 12, 1988

4. DATA FLOW (Fosdick 1976) - In this
approach, the two major structural
analysis methods are combined. Data
flow analysis evolved from global
optimization techniques used within
compilers. This method is based on
our intuitive notions regarding the
reading and writing of variables. It
is intuitively plausible, that each path
between assignment of a variable, and
usage of that variable should be executed
Although this is an appealing concept,
there are some practical difficulties
related to the tracking of array elements,
members of structures and variables
identified by pointers (Frankl 1986).

5. BOUND ON ITERATION (Sneed 1986) - Sneed

DIGRAPH

has reported a commercial tool, SOFTEST, which
measures branch and forward path coverage
(paths without cycles). The Ct metric also
falls into this general category.

Control flow may be represented by a directed graph. In
order to i 11 ustrate Ct coverage, it is necessary to
first set forth some informal definitions, which are
given in Figure 10.

Digraph definitions
FIGURE 10

Ct K=l TEST COVERAGE METRIC

The basic concept in Ct coverage is to keep track of how
many times each loop is traversed. The minimum
iteration count 'K' is specified for a given test. The
use of Ct K=l coverage is similar to the strategy
employed in Cl coverage. In Cl, each decision outcome
is exercised at least once. In Ct K=l, eich loop in the
program is exercised at least once. This covers loop
initialization problems and corresponds with the
intuitive notion of necessity.

page 6

0

0

PATH TESTING MAY 12, 1988

The concept of Ct coverage and associated issues will be
presented informally through a series of examples that
have been adapted from (Miller 1988)°. Figure 11 lists
the Ct K=0 paths for example 1, the example program
first presented in Figure 4. '

Eg. 1 - No repetition
FIGURE 11

In this digraph, and all further digraphs, code
segments will be represented by edges, since this makes
the control flow easier to follow. In this example,
there is no repetition, so there are no additional paths
for K > 0. Note that the Ct K=0 paths are the same as
the level-0 paths. This may result in a general problem
with Ct coverage, since the number of level-0 paths can
be very large, as witnessed in Woodward's results, which
are displayed in Figure 9. The mean is somewhat
misleading in this case, since most of the routines
tested had less than one hundred level-0 paths.

Example 2 illustrates a program with repetition; it has
two simple loops, segments 'b' and 'd'.

Eg •. 2 - Graph
FIGURE 12

Figure 13 lists the Ct paths for the cases K=0 and K=l.
The notation 'b' means that edge 'b' is executed exactly
once. The notation '[bl' is used to indicate that edge
'b' is executed at least once.

Eg. 2 - Repetition K=0,l
FIGURE 13

Figure 14 lists the Ct paths for K=2. As K gets larger
than one, the number of paths increases quickly,
potentially limiting the usefulness of K>l for analyzing
large programs.

Eg. 2 - Repetition K=2
FIGURE 14

page 7

0

·O

PATH TESTING MAY 12, 1988

Si nee this work is experimental, the K=l methodology
is not yet fully developed. We are using path notation
adapted from the theory of regular express ions. For
instance, the '+' operator may be used to solve a
possible problem with decisions which occur within
loops. This is illustrated in Example 3.

Eg. 3 - Graph
FIGURE 15

Loops are enumerated by the way in which they are
entered. The loop beginning with segment 'b' should be
counted as a single case; it should not matter whether
segment 'c' or 'd' is traversed. The Ct paths for
Example 3 are listed in Figure 16.

Eg. 3 - '+' Operator
FIGURE 16

The '+' indicates that either segment 'c' or 'd' may be
traversed on the given path. Another problem in the
development of an automated tool for Ct coverage has
been the presence of unstructured constructs in the 'C'
language programs. 'C' allows branches out of loops,
for example; "break", "return" and "exit."

Some preliminary Ct K=l results have been derived
from initial runs of the automated tool and checked
manually. These results, which do not include the '+'
correction, are shown in Figure 17.

Preliminary results
FIGURE 17

These results, along with other preliminary results,
suggest that the 'C' functions in this program fall into
one of two categories; those that have a managable
number of paths (less than 100) , and those that are
"explosive." For instance, Ct can be used as a
complexity metric. On the basis of these results, the
largest function, "getscn," should be carefully
examined, and perhaps partitioned into smaller
functions. In some cases, functions with a large number
of Ct paths, such as "putbox," may be testable, because
of the correspondingly large number of infeasible paths.

page 8

0

0

PATH TESTING MAY 12, 1988

FUTURE DIRECTIONS

There are several areas fundamental to path testing that
require further investigation;

1. Refinement of the Ct K=l coverage method.

2. Ct K>l.

3. A system level Ct K=l tool (similar to
STCAT, a system testing tool from Software
Research, Inc.}.

4. Infeasible paths.

5. Automatic generation of test cases.

We hope to have the first i tern completed by mid-year.
The second area is inherently difficult due to the
overwhelming number of paths, the extraordinary
difficulty of constructing test cases and the complexity
of controlling the iteration counts. The third area is
a matter of engineering, and the fourth is an open
question.

The last area is particularly interesting. This
problem may be approached by using the finite state
machine as a program model. Several investigators have
suggested methods for generating test cases on the basis
of a finite state machine model derived from functional
specifications (Chow 1978, Bauer 1979). It should be
feasible to derive the model from the control structure
of the program. The state machine model is equivalent
to the reduced digraph representation, and due to its
universality, is capable of representing any program.
In this model, the terminal and decision points within
the program are interpreted as program states and
represented by nodes in the diagram. A path becomes a
sequence of state transitions, as represented by a
sequence of arcs, taken from the entry node to the exit
node. The advantage of this model is that there is a
direct correspondence between the regular expressions
accepted by the automaton and the equivalence classes
determined by the path structure of the program. The
automated test program would therefore; derive the
state diagram from the source code, generate the set

pa~e 9

0

0

~O··

PATH TESTING MAY 12, 1988

of regular expressions, and convert these into test
plans. A possible problem in this approach may be the
large number of states generated by loops in the control
structure of the program (Masuyama 1983).

REFERENCES

Bauer 1979
Bauer, J.A. and Finger, A.B., "Test plan generation

using formal grammars," Proceedings of the 4th
International Conference on Software Engineering,
IEEE Computer Society, Sept. 1979, pp. 425-432.

Chow 1978
Chow, T.S., "Testing software design modeled by finite­

state machines," IEEE Trans. Software Engineering,
Vol. SE-4, May 1978, pp. 178-187.

Fosdick 1976
Fosdick, L.D. and Osterweil, L.J., "Data flow analysis

in software reliability," ACM Computing Surveys,
Vol. 8, Sept. 1976, pp. 305-330.

Frankl 1986
Frankl, P.G. and Weyuker, E.J., "Data flow testing in

the presence of unexecutable paths," Proceedings of
the Workshop on Software Testing, IEEE Computer

Society Press, July 1986 pp. 4-1~.

Goodenough 1975
Goodenough, J.B. and Gerhart, S.L., "Toward a theory of

test data selection," IEEE Trans. on Software
Engineering, June 1975, pp. 156-173.

Howden 1975
Howden, W.E., "Methodology for the generation of program

test data," IEEE Trans. Computers, vol C-24, May
1975, pp. 554-560.

Howden 1976
Howden, W.E., "Reliability of the path analysis testing

strategy," IEEE Trans. on Software Engineering Vol.
SE-2, Sept. 1976, pp. 208-215.

Howden 1987
Howden, W.E., Functional Program Testing and Analysis,

McGraw-Hill, 1987, pp. 96-99.

page 10

0
~

0

-0

PATH TESTING MAY 12, 1988

Kant 1985
Kant, E., "Understanding and automating algorithm

design," IEEE Trans. on Software Engineering, Vol.
SE-11, November 1985, pp. 1361-1374.

Masuyama 1983
Masuyama, H., "A software function test design using

state transition diagram," Trans. {D), I.E.C.E.,
Japan, Vol. 66-D, Nov. 1983, pp. 1294-1301.

Miller 1988
Miller, E.F., "Technology Brief:

metric - technical explanation",
Inc., April 1988.

Ct test coverage
Software Research,

Paige 1978
Paige, M.R., "An analytical approach to software

testing, IEEE COMPSAC 78, pp. 527-532.

Sneed 1986
Sneed, H. M. ,

testing,"
Testing,

pp. 34-40.

Woodward 1984

"Data coverage measurement in program
Proceedings of the Workshop on Software
IEEE Computer Society Press, July 1986,

Woodward, M.R., "An investigation into program paths and
their representations," Proceedings of the Second
Software Engineering Conference, Nice, France, E.

Girard (Ed.), June 1984, pp. 209-216.

Woodward 1986
Girgis, M.R. and Woodward, M.R., "An experimental

comparison of the error exposing ability of program
testing criteria," Proceedings of the Workshop on
Software Testing, IEEE Computer Society Press, July
1986 pp. 64-73.

'
0 0

NECESSARY

SUFFICIENT

ST A TEMENT CO

BRANCH C1

PATH

PROOF

Ct

SUCCESSION OF METRICS
PATH TESTING

0

-------------------------------------- ····--·--

i
I

!
'

i

'

0 0 .

INTENDED BEHAVIOR DES I GN CASES

ALGORITHM DEVELOPMENT
PATH TESTING

0

0 0

TESTS LOOK GOOD ACTUAL BEHAVIOR

ALGORITHM TESTING
PATH TESTING

0
I
' .

' . .
' '

I
I
! '
I

I
;
l

I

0 0

SEGMENTS
a b c d e f g

PREDICATES
X y

a
IF (x)

ELSE

END
d
IF (y)

ELSE

END
g

EG. #1 - DIGRAPH
PATH TESTING

b

C

e

f

0

I

0 0 0
, _______ ,...__ _______________________________ . ·-- ···- - --·· -·

FUNCTIONAL STRUCTURAL
SPECIFICATIONS CODE

DATA CONTROL
FLOW FLOW

TESTING THEORIES
PATH TESTING

-------------------- -- - . - ... - - ·-·-·----. ----- ·- - - --- -- .. - -----
-------------- -·-· _..,__ ----·

I

0
t

1 '

2.

3.

4.

5.

0

BOUNDARY INTERIOR (Howden)

LEVEL-i (Mi Iler, Paige)

LCSAJ (Woodward, Hennel I)

DATA FLOW (Osterweil, Fosdick)

BOUND ON ITERATION (Sneed)

PATH TESTING STRATEGIES
PATH TESTING

0

.
0

t

DD-PATH

LEVEL-i PATH

LCSAJ

0

path which begins on a decision node or entry
node and ends on a decision node or exit
node, and contains no other decision nodes

simple path that begins and ends on nodes of
some lower level paths; and remaining nodes
are not on any lower level paths

Linear-Code-Sequence-and-Jump {or JJ-path) is
a path which begins at either the target node
of a jump or an entry node and ends either on
a program jump or an exit node, and contains
no other jumps

SPECIAL PATH DEFINITIONS
PATH TESTING

0

,_

0
'

7

0

LCSAJs
1 : a a c
2: a b d
3: C d f
4: C d e f
5: d d f
6: d e g

MINIMUM PATH LCSAJ COVER
1: ab deg
2: a C d f g
3: a c d e g

EG. Ul - LCSAJ COVER
PATH TESTING

0

I

0
'

BASIC BLOCKS
DD-PATHS
LEVEL-i PATHS
LEVEL-0 PATHS
LEVEL-1 PATHS
LEVEL-2 PATHS
LCSAJs
STATEMENT COVER
BRANCH COVER
LCSAJ COVER

0

MAX.

158
164

45,287,485
45,287,476

31,349
18

338
10
1 1
63

WOODWARD 1984
PATH TESTING

0

MEAN

27.3
25.2

425,882.2
425,558.3

330.0
0.4

47.4
3.6
4. 1
9.7

I

0 .

NODE

EDGE

(SUB)PATH

PATH

SDMPLE PATH

SEGMENT

0

graph primitive, consecutive sequence of
statements with one entry and one exit

directed arc between two nodes

sequence of connected nodes

path from entry to exit node

path containing no node or edge more than
once

a simple path between two S-nodes which
contains no other S-nodes {where S-node is
an entry. exit, junction or decision node)

DIGRAPH DEFINITIONS
PATH TESTING

0

I

0
I

C b

f () 8

0

DD-paths
1: ab d
2: a C d
3: d e g
4: d f g

Ct K=O (also Jevel-0)
1 : a b d e g
2: a c d e g
3: a b d f g
4: a C d f g

level-1
none

EG. §1 - NO REPETITION
PATH TESTING

0

I

0 .

a

b

C I

d

e I

0

a
WHILE

END
C
WHILE

END
e

EG. f2 - GRAPH
PATH TESTING

0

(x)
b

(y)
d

0
'

a

b

C

d

e

0

K==O
1 : a C

K==1
1 : a C

2: a C [d]
3: C

4: ~ t~~ C [d]

EG. f2 - REPETITION K=0,1
PATH TESTING

0

e

e
e
e
e

I

0 .

a

b

C

d

e

0

K=2
1 : a C

2: a C d
3: a C d

4: a b C

5: a b C

6: a b C

7: a b [b C

8: a b f~ C

9: a b C

EG. 02 - REPETITION K=2
PATH TESTING

d
d

d
d

0

e
e

[d] e

e , I
I

e :

[d] e

e
e

[d] e

f

0

a

f

0

a
WHILE Cx)

ENDWHILE
f'

EG. 03 - GRAPH
PATH TESTING

b
IF Cy)

ELSE

ENDIF
e

C

d

0

..

!
I

l
l
i

.:

I

:1

!:

'

0

a

f

0

K=O
1 : a f

K=1
1 : a f
2: a [b (c + d) e] f

K=2
1 : a f
2: a b c e f
3: a b d e f
4: a b c e f~ 5: a b d e

EG. #3 - '+' OPERATOR
PATH TESTING

~c + d~ e~
C + d 8

f
f

;

0

FUNCTION

,YNUM
GETFIL
PUTFLD
FKEYDS
CKSUM
PUTBOX
GETSCN

0

LINES Ct K=1 PATHS INFEASIBLE

30 6
42 5
42 6
44 18
82 73

136 576
346 537,000,000

Cl K=l PRELIMINARY RESULTS
PATH TESTING

3
0
0
0
0

476
? •

0

0

0

Vondes Barnett

Federal Express
Memphis, Tennessee

Topic: Testing an Innovative Customer Automation System

Vondes Barnett is Senior Quality Assurance Analyst for Federal Express.
Mr. Barnett started his career in electronics in the U.S. Navy in the l970's, and
worked for 10 years with the Federal Aviation Administration as hardware technician
and systems performance analyst. At Federal Express he was senior en$ineer on a
satellite telecommunications project. His current assignment at FedEx 1s managing
the development of a customer automated system which represents a giant step in
computer-aided customer service.

a

0

0 '

Cem Kaner

Electronic Arts
San Mateo, California

Topic: Test Planningfor Consumer Software

Cem Kaner has extensive experience in software testing management, user interface
design, and free-lance writing. He has published numerous papers, and his recently
completed book Testing Computer Software will soon be released by TAB Books.
Dr. Kaner is currently Manager of Software Testing in the Creativity Division of
Electronic Arts. He previously supervised software testing projects at Micropro, and
started up a Software Testing Department at Telenova where he worked as a Human
Factors Analyst/Software Engineer, designing and coding the Telenova Station Set.
Dr. Kaner holds a Ph.D. in Experimental Psychology from McMaster University in
Hamilton, Canada and a B.A in Math and Philosophy from Brock University,
St. Catharines, Canada.

-ow
~~

0

·O

-.Q

Peter L. Morse

Microsoft
Seattle, Washington

Topic: Automated Testing in an Interactive Environment

Peter Morse is mana$er of Applications Testing for Microsoft Corporation. He
holds a B.S. in Electncal En$ineering and an M.S. in Computer Science. Prior to
joining Microsoft he spent eight years as a Systems Engineer and Manager at Data
General. Other experience includes work as a Systems Analyst and Electrical
Engineer.

0

0 .

Douglas Hoffman

Informix Software
Menlo Park, California

Topic: Technology of Quality

Douglas Hoffman has been Manager of Quality Assurance at Informix Software for
over a year. Mr. Hoffman has been active for over 16 years in the softare quality
field, having worked 10 years for Hewlett Packard and six years managing Q.A. and
support organizations for start-up companies. Mr. Hoffman received a B.S. in
Computer Science and an M.S. in Electrical Engineering from U.C. Santa Barbara
and an M.B.A from Santa Clara University.

0

0

Dari P. Patrick

Sandia National Laboratories
Albuquerque, New Mexico

Topic: Certification of Hardware with lmbedded Software

Darl Patrick has been in chaq~e of Quality Assurance for automated test equipment
at Sandia National Labs for eight years, and his current task at Sandia is certification
of high-risk automated test equipment for the Department of Energy. Mr. Patrick
spent 24 years in the military and holds an M.A. in Electrical Engineering from Naval
Post Graduate School in Monterey, California.

.o

0

,Q

CERTIFICATION OF AUTOMATED TEST SUITES
WITH EMBEDDED SOFTWARE

Darl P. Patrick, MTS

Sandia National Laboratories
Division 7252

Albuquerque, New Mexico 87185
(505) 844-8745

ABSTRACT

The use of automated inspection tools for certifying complex
test equipment can provide the production and quality assurance
engineers with a consistent set of metrics. Early identification
of probable design faults, in both hardware and software by the
use of automated inspection tools, yields a high-quality ·product
in less time and with less direct cost.

INTRODUCTION

This article discusses the use of software tools being developed
by Sandia National Laboratories for the certification of Automated
Test Suites with embedded software for high risk weapons programs.
The certification of automated testers is based primarily upon
verification of specifications by "Black-Box" testing and evaluation
of embedded software capability. These tools are presently being used
throughout the life cycle of High-Risk Automated Testers and can result
in the development of a "confidence number" which indicates the
tester's conformance to released specifications. The amount of "excess
capability" built into the tester with software, which was not tested
during "Black-Box" evaluation can be identified.

AUTOMATED TOOL CONCEPTS

The tools discussed in this paper were developed independently as
11 stand-alone11 tools to demonstrate feasibility. Sandia National
Laboratories and the u.s. Army Product Assurance Directorate are
jointly developing a "Quality Assurance Inspection Program", QAIP,
which is an integrated program that allows use of a common data base
by tool programs. The :instalJ,:- ·1 3.>1-:0,;rrans are a.bl-:: to ::.nteract with
each other via the data base ~}'stem information file, DBIF. Additional
integrated tools, including user independent tools, will be accessible
under the common executive program. QAIP is designed to allow diverse

0
users to use all or part of the tools in multiple operating system
environments with multiple languages. QAIP is presently being targeted
for the AT&T UNIX version 5 systems, with reduced MS-DOS capabilities.
The use of QAIP in an integrated environment allows users to confidently
certify both software and hardware high-risk projects in a consistent,
reliable, and repeatable manner.

The use of automated tools to facilitate certification of either
hardware or software can quickly lead the engineer into a false
sense of security followed by total frustration. Automated tools are
generally introduced into the work place with little experience as
to which metrics are required, how to implement them, or how to evaluate
the results. Classroom ~xamples and textbook formulas do not transpose
easily to the production environment.

Software Branch Analysis

Sandia National Laboratories Quality Assurance Division started
using a manual branch analysis metric for reviewing software in 1983.
At that time, there was no testing methodology for using this metric
other than that used by strum and ward in evaluating linear circuits.
T. McCabe of McCabe and Associates was working on the development of
an automated branch analysis methodology, but had not implemented
the practical usage. The expectations of testing were raised, but
practical usage of the metric and consistent interpretation of the Q manually produced graphs proved difficult.

·O

Three classifications of software testing are: functional testing,
structural testing and Code Branch Analysis (walk throughs).

a. Functional testing: Referred to as "Black-Box" testing
because the structure of the software is not tested, but
rather the conformance of the system to specifications is
tested. The software is tested via the hardware on a "stimuli
vs response" concept. Two of the most widely accepted
techniques for functional testing are boundary value analysis
and equivalence class partitioning.

Boundary value analysis detects errors at or near the boundaries.
It is used to assure thorough testing at, above, and below the
specification values plus any accuracy determinations.

Equivalence class partitioning is a technique to partition the
input domain into classes. Xf a test case from the class is
executed and fails to find an error then any other test case in
that class would also fail to locate "n error. ~he technique is
used to reduce the number of tests required.

0

0

Dynamic testing takes place once the software has been completed
and is integrated into the host equipment. Test cases developed
to stress the software are run and the execution observed in
real time. The effectiveness of dynamic testing is entirely
dependent upon the test cases developed from the specifications
and from the static analysis.

One of the major weaknesses of Functional Testing is that there
is no way of determining when testing is really completed. 100%
testing based upon functional requirements may actually check
only a small portion of the embedded software.

b. Structural testing: Referred to as 11White-Box11 testing,
emphasizes the opposite testing approach and stresses the
software performance rather than conformance to specifications.
This is generally accomplished by monitoring the programs
execution and/or by static analysis. Typically, it has been
observed that full functional testing results in approximately
30% to 40 % of the software branches being covered. Partial
functional testing based upon 11best engineering judgement" has
resulted in 15% to 18 % of the software branch paths being covered.

One of the most obvious benefits of structural testing is the
identification of untested code. This is generally code not
identified as a requirement but is implemented as a result of
test methodology. structural testing provides a confidence that
the software is 11good11 • In fact, the software could be fully
structurally tested and be 11good11 and still fail to meet the
functional requirements. It is for this reason the functional
testing and the structural testing must be combined in a cohesive
test plan. structural testing can be further broken down into
two phases, static and dynamic.

The static analysis of the software is best accomplished during
the design and building of the program. Complex and poorly
structured modules can be detected early and corrected. Static
testing is a "White Box" evaluation at this level. The number of
branches and nodes and the number of linearly independent test
paths required to cover all branches can be determined.

structural dynamic testing of software can be accomplished
during development of the software. Dynamic testing can
be done on each module or groups of modules using drivers and
stubs. The static test cases generated during the static analysis
can be used. Dynamic testing at this level is still "White-Box"
verification. It is difficult to dynamically test modules a.gainst
higher level specifications unless extensive stubs and drivers are
developed. This often takes more time then the program under test.

0

0

0

c. Branch Complexity: The number of independent test paths required
to cover all branches and nodes at least once is defined as the
module or program "Branch complexity Number". An important
limitation to static branch analysis is the inability to detect
time dependent events. Because the static branch analysis metric
has no concept of timing, code which has timing errors may 0

be passed as 11acceptable11 • Figure l shows a typical sequence of
activities when conducting static branch analysis on software.
Figure 2 shows a similar sequence for dynamic analysis of the
software.

d. Structured Walkthrough: The code formally is reviewed by a team
of trained personnel. This methodology is often referred to as
the AT&T or IBM approach. Working from released specifications
the team follows a script in checking and evaluating the soft­
ware. Although this is a labor intensive operation, if it is
done correctly, the resultant code demonstrates errors of less
than one per five-thousand lines of code.

Neither functional testing, structured testing, nor structured
walkthrough used independently is sufficient to ensure satisfactory
testing. They must be combined in a systematic method to ensure
the greatest coverage with the least number of test cases.

Testing at the system level requires a different strategy. All
drivers and stubs are eliminated. This forces the system to be
run and tested in a 11customer" mode. Branch analysis at this level
is dependent upon the time required to complete a single run. To
completely specify and run test cases at the system level using
dynamic testing may require "hundreds" of test cases. While the
testing is slow at this level, test validity is greatest. There
are many reasons for this. All of the operational code is installed,
all hardware interfaces are in place, tests are being run in a normal
manner, and operational documentation is used. Errors encountered
during this phase of testing are the most expensive to correct, but
have the greatest impact on delivered operability of the system.

0

0

.Q

...-tnt Error -1111·

Fix the
errors and
retv,the ·-

Prfnt
cowr­
Metrfc

lnfotMtion

START

lnatnaant
and Parse

SOt.rce COde

Functlool
Tosti"'

lrordl•Modt
.,,.lysl• for

towroge
Metric

no

Create New
THU

fl(II

Figure 1

0

no

0

0

CTAIT

Parse the ~-

Cord,i;t ··--·­Analysis

Det.,..ine the -· of lndlpermnt
Test Piths of
the -..1e

--·· ·=~ .. Twt ,ath1

Dfsplav -..l. and ..-.1.
Logic Graphs

no

atop

,rint or
,tot the
Grlipl(S)

Figure 2

0

0

0

Branch Analysis Errors

One of the major misunderstandings made of the branch analysis was
the expectation that software which had low module complexity would
have low error rates, and software which had high branch coverage
would have a low number of residual errors. Data and experience
indicates that there is no inherent direct correlation between high
branch coverage and low defect rates, or low module complexity and
low defect rates. The branch coverage is meaningless if test cases
are not generated properly. Low module or system complexity does not
indicate the true state of the testability of the software.

Many of the problems encountered when the branch analysis metric
was first implemented were caused by setting unrealistically high
branch coverage requirements and low module complexity requirements.
There is a proper place for each of these metrics to be used in the
lifecycle. At the module level of development the static branch
metric, module-complexity, can be used as an indicator of the module.
Modules which have high complexity values generally indicate a lack
of understanding of the event, or a weakness in the specifications.
It would be a simple task to conduct branch analysis on all software
at this level. The tester knows the code, and error conditions can
be forced. The use of Stubs and Drivers can facilitate execution of
the code. Unfortunately testing at this level has a limited value.
The tests being conducted are inductive of the software structure
and not of any specification functionality. It is often trivial to
achieve 100% coverage at this level and develop a false sense of
security, with no real test results being generated. The static
metric is of value, but should be used with full understanding of
the metrics limitations.

0

0

0

QUALITY ASSURANCE CONCEPTS

Quality Assurance is a collection of techniques which seek to
assure the hardware and software actually function as defined by
the specifications. This type of activity is part of the whole
lifecycle, but special methods are employed to focus on the
certification of tester hardware and software quality issues.

There are many approaches used to accomplish quality objectives.
The automated tools being developed by Sandia National Laboratories
stress certification of automated testers against released
specifications using demonstrable test cases.

The Quality Assurance Inspection Program, QAIP, being developed
by Sandia National Laboratories, is a software executive program
which provides user interface to diverse quality assurance programs.
There are presently three such programs which can be accessed from
the QAIP main menu:

a. 11T11 : An automated and computer-aided test generation tool,
developed under an Army contract by Product Environ­
ment Inc. (PEI). Specifications are entered in
response to prompts, valid as well as invalid test
cases are generated for use in "black-box" testing.
The test cases generated by "T" confirm that the
specifications are implemented by either the hardware
design or the software design.

b. 11S PATm11 : The Software Path Analysis Tool for software modules
is a static tool developed for Sandia National
Laboratories based upon development work done by strum
and Word of the Naval Post Graduate School, McCabe and
Associates, and the u.s. Army Product Assurance
Directorate Technology Office. The s PATm tool parses
and analyses the source code for a specified language
at the module level and displays a decision logic
diagram of the module's structure, from which software
or 11white-box11 test cases can be generated.

c. 11TCAT: The Test complexity Analysis Tool is one of a group
of software dynamic tools developed by Software
Research Associates (SRA), and modified with Sandia
National Laboratories for the Hewlett-Packard Advanced
Basic. The TCAT dynamic tool, at the module level,
instruments the program and provides dynamic traces
at the module level. The TCAT is used with the test
cases generated with the 11T11 tool, S PATm tool, or
other test-case development methods.-

!?IE: A Peripheral Interface Emulator, is a hardware 11smart-box11

interface which allows the programmer to control the data
returned when a program accesses an external device such as a

0

0

0

digital multimeter. It can be programmed to compare "as-read"
values with specification limits. PIE allows partial dynamic
checkout of tester software using test cases developed without
requiring the actual peripheral devices to be physically present.

The programmer is able to enter the 11device11 addresses, expected
return value and specification limits. When the program is executed,
it outputs data to the desired address and receives data. The
results of the received data will cause valid as well as invalid test
cases to be evaluated. The "PIE" box can store the test, the time of
the test, the prompt, the value returned, and the correct limit for
later data dump and evaluation.

The use of "PIE" should enable programmers to develop the test
software independent of the delivered hardware. Full independent
software evaluation is not feasible due to timing constraints and
unique "smart-chassis", however PIE should allow early delivery
of a higher quality software prior to hardware/software integration.

Figure 3

0

0

0

AUTOMATED TEST EQUIPMENT LIFECYCLE

Figure 3 is representative of test systems certified by Sandia
National Laboratories for the Department of Energy. In the
academic lifecycle of high-risk test suites the development of
the hardware and the software occurs only after the specifications
have been reviewed, corrected and issued, as shown if Figure 4.

once the system requirements are released, both the software and
the hardware design, test, and review processes begin and continue
nearly in parallel. Upon completion of the hardware, the software
which is ready to be installed, is installed in the hardware and
integration testing commences.

CD
System

Requirements

SW Desi n Code Debu

HW Desi n Fabrication
\\\\\\\\\\'@

Figure 4

\
\\\\\\\\\\\\\\\\\\\\\
\\\\ \\\\\ \\\\\\\\\\\\

System @
Integration Tests I t

Software 1

Baseline

I

Control

F.A.T.

0

1
Review

Final Design
Rev•iew

I

@

0 In fact the actual development of the test suite more accurately
follows the lifecycle shown in Figures.

G)
A

HW\VD

Module lntegrat ion
and Test

SW Change Control

F.A.T.

System
Document

Test@ t
Sof ware
Baseline f 0®

Test
Review

Final

0

. o

Design Review

Figures

The specifications are "soft•• at the beginning of the project, but
funding has been allocated and hardware placed on order. The
hardware design continues, based upon best estimates, with the
expectation that future changes can be incorporated via software.
The software is never defined with firm specifications. It remains
a "shadow" of the system functional specifications. It is natural
therefor for the software development to lag the hardware. Some
early software work is done without firm software specifications,
automated tools or emulators. once the hardware completes initial
fabrication, both the hardware and the software engineer vie for
limited resources. The general result is that the software is
integrated into the tester and "debugged" on the fly with the earnest
hope that there is enough time.

Sandia National Laboratories has enhanced the Product Quality
Assurance Team (PQT) concept, used in certifying hardware and
software, for the use of automated inspection tools. Under the
PQT concept the Quality Assurance, Design, Test Equipment and
Product Engineers form a Product Quality Assurance Team early in
the tester life cycle. Figure 6 shows the product lifecycle with
the PQT concepts and the automated tools combined •

0
~ © Module Integration
\V Code, Debu 4 and Test

@ F.A.T. <z)

<D
ys em~ t

®
Qualification

System
Document

ration Tests\2/ r
Sof ware
Baseline

Test
Review

Release

0

,Q

POT
Established

Tasking

Test
Plans

EQ Plans

Static

Oynami
Tools

PIE
Box

Testing
Reports

Figure 6

Test

Test
Cases

Computer

POT
Review

Release

Archive

Reports

The first unreleased draft of the product specifications which
controls the tester design, is processed by the Quality Engineer
using the specification program. The first set of test cases
generated is voluminous. An example of a single specification
illustrates the number of test cases which can be generated:

The flight power pulse shall rise to a voltage of 15 volts
+/- 1% in less than 1 millisecond

volts time status
15 .75 ms valid
15.15 .75 ms valid high bound (hb)
14.85 .75 ms valid low bound (lb)

0 • 75 ms invalid zero case (ilb)
14.80 • 75 ms invalid low bound minus (ilb-)
15.20 .75 ms invalid high bound plus (ihb+)
15.0 • r;g··ms v~lid high bound minus (Vhb-)
15.0 1.00 ms invalid high bound plus (ihb+)
15.0 o.oo ms invalid clock failure

0

0

If the test specification were changed to read:

The flight power pulse shall rise to a voltage of 15 volts
+/- 1% in less than 1 millisecond with a ripple of less

than 10 mv +/- 1%

The resulting test cases would be:

volts time ripple status
15 .75 ms r< 10 mv valid
15.15 .75 ms r< 10 mv valid high bound
14.85 .75 ms r< 10 mv valid low bound

0 .75 ms r< 10 mv invalid zero case
14.80 .75 ms r< 10 mv invalid low bound minus
15.20 .75 ms r< .10 mv invalid high bound plus
15.0 .99 ms r< 10 mv valid high bound minus
15.0 1.00 ms r< 10 mv invalid high bound plus
15.0 o.oo ms r< 10 mv invalid clock failure
15 .75 ms r= 10.1mv valid ripple, Uhl:>
15 • 75 ms r= 9.9mv valid ripple, llb
15 .75 ms r= 10.2mv invalid ripple uhb+
15 .75 ms r= 15 mv invalid ripple
15.15 .99 ms r= 10.2mv valid stress uhl:>
14.85 .99 ms r= 10.2mv valid stress llb

The above example illustrates the rapid growth of test cases if
extensive testing were attempted. Based upon the example, there would
be 1500 test cases per thousand specifications. To help reduce the
test burden the test cases might be partitioned using equivalence
class techniques. If the design of the software acceptance and
exception handlers were known further test class reductions might
be achieved. When the final set of test cases are agreed upon, they
represent a set of 11critieal11 test cases. Failure to execute a test
in this set fails to test an entire class of tests or software.

The resulting test eases and known certification requirements are
listed in a "Product Qualification Plan" (PQP), and formally
released. The released PQP provides the tester engineer with the
baseline for acceptance testing the test-suite will have to meet.

The PQP serves as a development baseline guide for design and
testing of the hardware and for the software modules. The test
cases are also placed in a test-file for use during final certifica­
tion of the tester. Software development continues, independent of
the hardware fabrication using the test cases developed by the
automated specification program, the Static Path Analyses Tool, and
the PXE box. Softwc1.re modules c1.re checked using S PATm, and 11White­
Box11 test eases developed. Figure 7 illustrates an 11untestable 11

module while Figure 8 illustrates a 11 testable11 module. In both cases
the modules function and appear to satisfy system requirements. In
figure a, the test paths through the module can be determined using
s_PATm, but because of the large number of variables required to

0

0

execute the test cases, they cannot be physically implemented.
Modules of this size and complexity generally indicate poor specifi­
cations, poor programmer understanding of the specification,
confusion, or all the above. The module may appear to work, but
cannot be maintained. Future changes to the module may result in
totally unexpected results. Test cases can be easily generated and
applied to the program module shown in figure·&, because it is ·
easily understood and testable, therefore it is easily maintained.
Figure 9 shows the code logic diagram of figure 7 with four lines of
code changed. While the module is still difficult to analyze, it is
apparent that additional changes can be made which will allow the
module to analyzed, tested, and maintained.

The ability to test the module and compare the results against
released specifications enhances the confidence of the module and
the maintainability of the program.

The test cases developed during the use of the s PATm are placed
into a test file with the test cases developed from-the "T" tool or
manually generated specification tests, for combined use during
final tester evaluation. When the software is integrated with the
hardware and system prove-in begins, the quality assurance engineer
begins initial testing using the test cases developed and stored in
a data-base file. In addition to using the S_PATm tool, the dynamic
run time tool, TCAT, is used to evaluate the software. Using the
test cases developed with "T" ands PATm, the program is run in an
emulator mode and the paths through-the software are recorded as is
the total number of possible test paths. The ratio of test paths
executed to the total possible test paths constitutes a metric
called coverage. The Cl metric is the coverage of a single test
case, while the C2 metric is the summation of linearly independent

MENU
SUB: Menu (A)

Q Basic
Complexity 47

0

0

"

Figure 7

Upward Flows
Loop Exits
Plain Edges
Tue Mar 29 10: 17

MENU
GOSUB_Fr int_menu (F)

Q Basic
Complexity 12

0

~o

36
37

16

2
23

30

----4
45
46

Upward Flows
Loop Exits
Plain Edges
Tue Mar 29 10: 34

Figure 8

MENU
SUB: Menu (A)

Q Basic
Complexity 22

0

~o

Upward Flows
Loop Exits
Plain Edges
Tue Mar 29 10: 30

Figure 9

0

0

~o

test paths covered during all testing compared to the total
independent test paths. Software test paths not tested are
identified and evaluated and a decision made as to whether the
paths are additional capability, low risk or high risk, specifica­
tion dependent, and additional tests are required by the PQT.

Upon completion of emulation testing, the Product Quality Team is
able to determine whether all specifications have been implemented
via software, how the software functions under exception testing,
and what excess capability has been built into the tester that was
not required by the specifications. Final certification testing of
the test suite is accomplished by the PQT using evaluated software
and the host system. Using the results of the quality assurance
evaluation, the system is tested using released documentation and
a second dynamic tool developed by SRA called S TCAT. S TCAT is
a system-level version of the TCAT and provides-coverage-analysis of
the system path coverage. The coverage metric, C3, provides path
analysis of the released specifications developed with the automated
specification tool. s TCAT is presently under development for the
Hewlett-Packard Advanced 5.0 Basic.

The verification of the test suite using the automated tools allows
the PQT to determine the degree to which the tester meets required
~pacifications. It further identifies excess system capability built
into the test suite which was not required by the specifications.
The degree of specification verification provides the basis for the
"confidence-number" for the test suite. A test suite for which all
specifications have been met and tested and no high risk excess
capability, would be assigned a confidence-number of 100. The
confidence number indicates the capability of the test suite to
repeatedly perform all specification testing for the life of the
tester. The use of the published test cases and requirements also
provides the test equipment engineers with an 11acceptance11 criteria
early in the development cycle.

When the test suite is modified, the original test cases used to
verify the specifications and the modified test cases developed
are used to recertify the test suite in an easily controlled and
documented fashion.

QAIP REDESIGN

The automated tools presently being used are independent. Data
transfer between the tools, and interpolation of data is accomplished
by the operator. The QAIP tool is presently being redefined jointly
by Sandia National Laboratory and the u.s. Army Quality Assurance
Directorate to integrate the functions of a group of hardware and
software tools. The use of a common data base and emulators provides
a tool which can be used by operators with diverse background and needs.

0

0

While all functions of the QAIP program are linked via the data base,
each capability is modular and can be deinstalled and replaced with
no affect to the operation of the remaining modules. The design
capabilities of QAIP are:

a. Executive Program: Provides a "user friendly" interface
between the operator and the system modules. Printer, Plotter,
and Screen types are installed. Data file source and destination
are retained for use.

b. Word Processor: A link is established to the local word processor
so each user can control the data and the reports generated.

c. specification Tool: Allows user input of specifications and
accuracy requirements and generates test cases required to
ensure 100% specification test coverage. Test files generated
are maintained in the Data Base Information File and printed
as part of a preformatted "Testing Document".

d. Language Parser: A parser for any language which provides the
mapping to determine the branch and node interconnections.
All parsers conform to the DBIF interface definition. The
parser allows parsing of a module, group of modules, or the
system.

e. Static Analyzer: The static analyzer uses the information in
the DBIF from the parser to:

1.

2.

3.
4.

s.

6.

7.
8.

9.

calculate the minimum. number of test paths through the
module(s) or system.
generate the test cases required to transverse each
test leg for the module and system level.
record the starting and ending line number of each module.
annotates the code listing to correspond to the branch­
node graph.
provides for printout to printer, plotter or screen of
the branch-node graph.
allows editing of a file and reparsing of the file. The
reparsed file is given.a new suffix.
generate a 11Call-Willcall11 map.
generate a cross-reference listing of names, labels,
variables, subroutines, functions,

0

0

f. Dynamic Analyzer: The dynamic analyzer instruments the source
code and establishes a local data file. The source code
instrumentation is linked to the branch-node definition of the
static analyzer. The Dynamic analyzer:

1 •. records the branches and nodes covered as each test
case is run.

2. each test case records the individual coverage (C1)
and the cumulative coverage (C2).

3. provides for printing a listing of "branches hit" and
"branches-not bit11 •

4. provides an output to the screen, plotter, or printer
of the "branches hit" and /or the "branches not hit"
overlaid on the static branch-node graph.

s.

Upon completion of all testing, the Dynamic Analyzer transfers
the data files to the DBIF.

g. statistics: The statistics module provides standard data
reduction and evaluation capabilities. Data which is recorded
during testing can be retained and analyzed off-line.

h. Graphics Program: The graphics program interfaces directly with
the DBIF and provides plotter, printer, and screen outputs. The
graphics program is driven by the DBIF data interface specifica­
tions and will present the same graphics regardless of the
design language being used. This provides the user with a
common visual interface.

i. Oser Tools: The executive program provides for up to six user
programs to be linked to the selection menu. The user programs
are not linked to the DBIF but can be run from the executive
program.

j. Flow Chart: The flow chart program uses the parsed DBIF and
produces a module level flow chart of the code. The program
can be viewed and edited on the screen. Plotter and printer
outputs in a "compressed no Alpha mode" or a 11multipage detailed
mode11 •

0

0

0

SUMMARY

The use of automated inspection tools can increase the confidence
of the user that test suites are performing per their specifications
and will fail in a predictable manner. Where test case generation,
software inspection, and dynamic testing are being done manually, the
use of automated tools results in a dramatic decrease of time and
dollars with a corresponding increase in observed reliability. Where
such activities are not being done, the implementation of an automated
test and inspection process will increase both time and dollars. But
the observed reliability will be decidedly improved.

The implementation of the automated tools must be tailored to each
agency's needs. It is possible to 11graft11 tools from one user to
another, but the tailoring is still required. There are no "SILVER
BULLETS" in quality assurance.

1.

2.

3.

4.

s.

6.

7.

8.

9.

10.

REFERENCES

M. Fagan, "Advances in Software Inspections", IEEE Transactions
on Software Engineering, Vol. SE-12, no. 7, July 1986.
E. Yourdon, 11 structured Walkthroughs", Prentice Hall, Englewood
Cliffs, N.J., 1979 -
R. Dunn, "Software Defect Removal", McGraw-Hill Book company,
New York, NY
J. Loeckx and K. Sieber, "The Foundations of Program Verification",
Johm Wiley & Sons, 1984
B. Beizer, "Software system Testing and Quality Assurance", Van
Nostrand Reinhold Company, NY 1984
B. Baizer, 11Software Testing Techniques", Van Nostrand Reinhold
company, NY 1983
Chin-Kuei Cho, "An Introduction to Software Quality control",
John Wiley & Sons, NY 1980
M. Deutsch, "Software Verification and Validation", Prentice­
Hall Inc. 1982
Musa, Iannino, Okumoto, 11Software Reliability, Measurement,
Prediction, Application", McGraw-Hill 1987
T. J. McCabe, "Structured Testing", IEEE Computer Society,
IEEE Catalog No. EH0~00-6, ISBN 0-8186-0452-2, 1983

a 0 0

QUALITY ASSURANCIE DIV~SION 7252

SANlD~A NATIOINAl lABORATOR~ES
ALIBUQUERQUE, NEW MIEX~CO 87185

(505) s44 .. a745

88f=7000.06

Sandia
National
Laboratories

0 0

SANDIA NATIONAL LABORATORIES
QUALITY ASSURANCE

DATA MODULE

CALL INST"CNTR,INIT"
CALL INST"CNTR.HELP"
CALL INST"CNTR,SET,

125 FORl=1TO200
126 SELECT T-des (I)
127 CASE "TC:"
128 !NIW TEST CODE
129 PRINT
130 PRINT "TEST CODE:
131 CASE "TA:"
132 PRINT
133 PRINT "ADAPTER:"
134 CASE""
135 !BLANK LINE
136 CASE ELSE
137 !TEST ID
138 PRINT
139 TAB (4); T-des (I) ;TA
140 END SELECT
141
142 NEXT I
143 PRINTER IS CRT
144 INPUT "ENTER PASS"
145 IF T< >"PASS'' THEN
146 No _ Access
14 7 OUTPUT 2;K
148 ELSE
149 ASSIGN @ Ascll
150 END IF
151 ON ERROR GOTO File
152 I
153 !
154 FIie - end:
155 ASSIGN @ Ascii To
156 ON ERROR GOTO Skip
157 PURGE "LIMITS"
158 Skip:
159 OFF ERROR
160 CREATE BDAT "LIMIT
161 !
162 NEW LIMITS FILE
163 ASSIGN @ BDAT TO

augeishamg.bas

SUB - Geisha - mgr .EXCE (A)
Basic
Complexlty 50

23
24

0

2

21

41

42
43
20
27
211
29

311
39

30
31
32

35
33
34

163
;164

3
7

136

137

138

139

144

0

88G7000.59

Upward flows
Loop exists
Plain Edges
Sun Jan 11 10:32

Sandia
National
Laboratories

0 0

TYPES OF CERTIFICATION PROCESSES

o EQ OF AUTOMATED TEST EQUIPMENT

0

o USE OF MINIMUM LEVEL LANGUAGE (BASIC, FORTRAN, ETC.)

- 50,000 LINES OF CODE

~ INSPECTIONS OF AUTOMATED EQUIPMENT

- PT/ TE/ DT / COMMERCIAL

- 50,000 LOC

- MEDIUM OR HIGH LEVEL LANGUAGES (BASIC, PASCAL)

6) INSPECTIONS OF SANDIA PRODUCT CODE

- 4000 - 100000 LOC

- ASSEMBLY - UP
88F7000.08

Sandia
National
Laboratories

0

SRR

DPP DIV 7252

88F7000.12

FUNCTIONAL
BASELINE

SDR

0

QUALITY ASSURANCE

ALLOCATED
BASELINE

CDR

LITY SYST

PRODUCT
BASELINE

FQR

SRA ... SYSTEMS REQUIREMENTS REVIEW

SDR ... SYSTEMS DESIGN REVIEW

CDR .•• CRITICAL DESIGN REVIEW

FQR •.. FINAL QUALIFICATION REVIEW

0

Sandia
National
Laboratories

0 0 0

QUALITY ASSURANCE 88G7000.60

QUICKSAND AHEAD

FOREST FIRE BEHIND!!

0

88F7000.07

0

WHAT CONSTITUTES A HOSTILE ENVIRONMENT?

Q INABILITY TO CONDUCT FULL HW / SW TESTING

o INABILITY TO DESIGN FROM FIRM SPECIFICATION

o LACK OF DEVELOPMENT TEST DAT A

o LACK OF COMPREHENSIVE KNOWLEDGE OF SYNTAX OF
LANGUAGE BEING USED

o LACK OF UNDERSTANDING OF THE ROLE RELATIONSHIPS
OF HARDWARE AND SO'FTWARE

o LACK OF SOFTWARE CHANGE CONTROL

o CONCEPT THAT QUALITY IS GREAT IF IT:
A. DOESN'T TAKE ANY EXTRA TIME
B. DOESN'T COST ANYTHING
C. DOESN'T DELAY PRODUCTION

o LACK OF FIRM REQUIREMENTS FOR HW OR SW

0

Sandia
National
Laboratories

0 0 0

SOME MISCONCEPTIONS CONCERNING TESTING:

88F7000.10

~ TESTING IS THE PROCESS OF DEMONSTRATING
THAT ERRORS ARE NOT PRESENT

@ THE PURPOSE OF TESTING IS TO SHOW THAT
A PROGRAM PERFORMS ITS INTENDED
FUNCTION{S) CORRECTLY

o TESTING IS THE PROCESS OF ESTABLISHING
CONFIDENCE THAT A PROGRAM DOES WHAT
IT IS SUPPOSED TO DO

Sandia
National
Laboratories

0 0

RESUl T OF APPLICATION OF
THESIE MISCONClElPTIONS:

Q IF THE GOAL IS TO SHOW NO ERRORS, THAT
IS WHAT THE ·TEST CAS.ES WILL DO

• IF THE GOAL IS TO SHOW OFF THE PROGRAM'S
STATED FUNCTIONS, THE TEST CASES WILL
SHOW LITTLE ELSE

o IF THE GOAL IS TO PROVIDE CONFIDENCE THAT
A PROGRAM IS PERFORMING CORRECTLY, THE
LAST THING A TEST CASE WILL DO IS
FIND ERROR·S

0

Sandia
National

88F 7000.11 . Laboratories

0

G)
SYSTEM

REQUIREMENTS

88~7000.18

I
I
I
I
I
I
I
I

0

SW DESIGN CODE.DEBUG

® ©
HW DESIGN FABRICATION

\\ \\\\\\\\\

® ©
SCOR HCDR

0

1--<:.,---sw CHANGE CONTROL-

MODULE INTEGRATION
AND TEST ®

SYSTEM
INTEGRATION TESTS

SOFTWARE
BASELINE

®

* I
I

F.A.T.

0 ®

t
TEST I REVIEW

I
I .

FINAL DESIGN
REVIEW

I
I

Sandia
National
Laboratories

0

SYSTEM
DOCUMENT

88G7000.28

SW DESIGN

0

CODE, DEBUG

®
FABRICATION

HCDR

©

SCOR

0

SW CHANGE CONTROL

SOFTWARE
BASELINE

F.A.T.

®0® t R~~rw
FINAL DESIGN

REVIEW

Sandia
National
Laboratories

0 0

"WE NEED A LITTLE MORE WORK HERE!"
88G7000.58

0

Sandia
National
Laboratories

0

G)
SYSTEM

DOCUMENT

88G7000.20

POT
ESTABLISHED

SW DESIGN

@
TDR

TASKING

TEST
PLANS

* 0 s

0

© CODE.DEBUG ©
SCOR \ \ \ \ \ \ \ \ \ \

HARDWARE FABRICATION

STATIC

DYNAMIC
TOOLS .. Ill

c~:l X
Ill

MODULE INTEGRATION
ANO TEST

0

© F.A.T. 0

TOOL

DATA

BASE

TESTING
REPORTS

..

SOFTWARE
BASELINE

TEST

TEST
CASES

l»r COMPUTER ~

TEST
REVIEW

POT

®
QUALIFICATION

RELEASE

REVIEW

I RELEASE

I ARCHIVE

REPORTS -
I-

Sandia
National
Laboratories

0 0 0

SPIEC~FICATION TEST GENEIRAT~ON TOOL

ssF1000.14

(''T'')

A TOOL WHICH CONTROLS OPERA TOR
INPUTS OF SPECIFICATIONS AND
GENERATES A SET OF LINERLY
INDEPENDENT TEST WHICH ENSURE
ALL SPECIFICATIONS ARE COVERED

Sandia
National
Laboratories

0 0 0

T TOOLS
88G7000.30

EDIT SOFTWARE IDENTIFICATION
EDIT SOFTWARE DESCRIPTION

VERIFY TERMINOLOGY
VERIFY REQUIREMENTS

TRANSFORM PRESENTATION
ASSIGN REQUIREMENTS TO SETS

COLLECT TESTING SPACES
CHOOSE REFERENCE POINTS

SI

REQT

VERB

OBJECT

STATE

DATA

COND

EVENT

(XSIG)

(ZVAL)

Sandia
National
Laboratories

I VTEAM I VREQT I TRANSF I ASGSET

SPACE
(S1)

SPACE
(S2)

SPACE
(S3)

SPACE
(S4)

REFPT
(S1)

REFPT
(S2)

REFPT
(S3)

REFPT
(S4)

GENERA TE TESTS

I
S1R1

S1R2

S1R3

S2R1

S2R2

S2R3

S3R1

S3R2

S3R3

S4R1

S4R2

S4R3

0 0 0

,r Unit: alltimer ver 1 BBG7000.32

Report: Software Identification

Testunit is not protected Rev 21:59 08-26-87

Description
Sample testunit. This FORTRAN subroutine will
produce an updated data and time, given reference
date and time and some number of minutes (positive
or negative) by which to shift the reference. It
is used for the calculation of radiation exposure
in the event of a leak from a nuclear power plant
reactor. It should probably be tested rather
"thoroughly."

References

Code

MS

Document Names

Module Specification for XXXXXXXX, version 1.2a
filed in software library under project NR-MON. Sandia

National
Laboratories

0

T Unit: alltimer ver 1
Report: Dataltem Listings

28_ day_ counter
Type
Unit
Mn/Mx/Rs
Desc
Tels

28 _day_ month
Type
Desc
Tels

29 _day_ counter
Type
Unit
Mn/Mx/Rs
Desc
Tels

29 _ day_ month
Type
Desc
Tels

88(;7000.33

0

- day28
integer
day
1/28/1
valid counter for 28-day month
v nm 1 @ 7
V lb @ 1
V hb @ 28

0

Rev 13:50 06-29-87
Grp -

- mon28 Rev 13:50 06-06-87
choice Grp -
a month having 28 days (normal year, feb)
v nm 1 @ February

- day29
integer

Rev 13:50 06-29-87
Grp -

day
1/29/1
valid counter for 29-day month
v nm 1 @ 7
V lb @ 1
V hb @ 29

- mon29 Rev 13:50 06-29-87
choice Grp -
a month having 29 days (leap year, feb)
v nm 1 @ February Sandia

National
Laboratories

0

T Unit: alltimer ver 1
Report: Dataitem Listings

3 O _ day_ counter
Type
Unit
Mn/Mx/Rs

integer
day
1/30/1

0

- day30

Desc valid counter for 30-day month
Tels v nm 1 @ 7

30 _ day_ month
Type
Desc
Tels

31 _ day_ counter

88G7000.38

Type
Unit
Mn/Mx/Rs
Desc
Tels

V lb @ 1
V hb @ 30

- mon30
choice
a month having 3 O days
v nm 1 @ April
v nm 2 @ June
v nm 3 @ September
v nm 4 @ November

- day31
integer
day
1/31/1
valid counter for 31-day month
v nm 1 @ 7

0

Rev 13:50 06-29-87
Grp -

Rev 13:50 06-29-87
Grp -

Rev 13:50 06-29-87
Grp -

Sandia
National
Laboratories

0 0

T Unit: alltimer ver 1
Report: Dataitem Listings

user- entry
Type
Desc
Tots

V tr 1
V tr 2
V tr 3
V tr 4
V tr 5
V tr 6
vlb
V lb+
V hb­
V hb
i an 1
i an 2
i lb -
i hb +

sequence

@ 0
@ - 1
@ 1
@ 1439
@ 1440
@ 1439
·@ .. 527040
@ - 527039
@ 527039
@ 527040
@ null
@ ss
@ - 527041
@ 527041

- uniput

user entry: date time shift
v nm 1 calendar_ date

+ time - of - day

0

88G7000.29

Rev 16:31 06-29-87
Grp -

Sandia
National
Laboratories

+ time - to_ shift - reference - date I time

0

SYSTEM
DOCUMENT

r
-

SPECIFICATION
TOOL "T"

1

- DISK HARD -
COPY

88F7000.21

0

-- PRODUCT
SPECIFICATION

-
- -

I A ~--,
I

HARD
COPY

I
I
I
I

*
TEST FILE
COMPARE

, .

~
~

-

'

SPECIFICATION
TOOL "T"

' ,
-

HARD -
COPY

~

DISK I 8

0

~

~

~--,
I
I
I
I
I
I
I
I

-
________________ J

-

DISK I c)
Sandia
National
Laboratories

0 0 0

soIF·rwA~E PATH ANALYS~S lOOlS

(!PATS)

88F7000.13

A SET OF SOFTWARE TOOLS WHICH
WILL AUTOMAT~CALL Y "READ'' THE
HOST SOFTWARE AND DETERMINE
METRIC MEASUREMENTS

Sandia
National
Laboratories

0 0

I. CAPABILITIES OF PAT_ S

o ABLE TO READ PRODUCTION CODE OFF A PRODUCTION
DISK AND ANALYZE THE CODE FOR:

- SYNTAX ERRORS
- DECISION NODES
- LOOPS
- BRANCHES (LONG AND SHORT)
- INTERRUPTS
- COMPLEXITY OF EACH MODULE
- CRITICAL TEST PATH

o GRAPHS THE LOGIC OF THE MODULE

o PRINTS AND GRAPHS ALL LINEAL Y INDEPENDENT TEST
PATHS OF THE MODULE

o ALLOWS EDITING OF A MODULE

II. INCREASES INSPECTION THROUGHOUT FROM 1000 LOC/WEEK
TO= 8000 LOC/WEEK

88F7000.15

0

Sandia
National
Laboratories

0 0 0

File:CSELECT.BAS
ANNOTATED SOURCE LISTING

DATE/TIME: WED FEB 11 18:59
Language: H.P. BASIC PAGE 1

MODULE MODULE PREDICTIVE STARTING NUMBER
LETTER NAME TEST PATHS LINE OF LINES

A SUB _ Initialize 1 62 17
B SUB _ Rack _ turn _ on 1 82 60
C SUB _ Graphic _ message 2 145 20
D SUB_ Chan_ id 1 168 24
E SUB _ Multiplexchan 1 195 3
F SUB_ Serialnumber 8 201 230
G SUB_ Titlepage 4 440 26
H SUB _ Voltmeter 1 470 4
I SUB _ Voltmeter _ Id 1 477 8
J SUB _ Drawertest 11 488 155
K SUB _ Passfall 3 646 14
L SUB _ Dataheader 1 663 7
M SUB _ Openlooptest 10 673 56
N SUB _ inittwopolnt 10 733 66
0 SUB _ Repeatability 18 803 164
p SUB _ Fourpolnttumble 14 971 81
Q SUB _ Pfcolor 2 1056 9
R SUB_ Push 15 1068 78
s SUB _ Voltagesource 1 1150 3
T SUB _ Pushtest 12 1156 71
u SUB_ Minmax 4 1231 10
V SUB_ Graph 2 1244 6
w SUB_ Paplot 3 1253 46
X SUB_ Labels 2 1302 18
y sue_ Test 1 1323 9
z SUB _ Biasplot 3 1335 36
a SUB_ Allgnplot 3 1374 36
b SUB _ Springplot 6 1413 49

~Sandia
C SUB_ Curveflt 4 1465 30 National

88F7000.41 d MAIN 7 1 58 Laboratories

MENUSMAL.BAS
Menu (A)

Qyclomatic 9

0

0

Wed Apr 13 14:27
Upward FlOWE

Loop Exits
Plain Edges

.4NTWO.BAS
~AIN (W)

Qyc·1omatic 75

0

Tue Apr 12 05:08
Upward Flows
Loop Exits
Plain Edges

MAIN1 .BAS
).iA~N (\'}

Qyclomatic 65

r-220
I

0

0

~23

-,

2
-,

i

I:

Tue Apr 12 05:40
Upward Flows
Loop Exits
Plain Edges

12

\1AIN1.BAS
iAIN (V)

0 byclomatic 65

------~----.........__

0

0

I

\

\
I
I

\
~

I
I

Tue Apr 12 05:51
Upward Flows
Loop Exits
Plain Edges

\
\

\
I
I

\
\

\

\

-:NONE.BAS

MAIN (W)

Q Cyclomatic 69

0

.Q

I
I

\
I
I

\
I
I

l

Tue Apr 12 05: 23
Upward Flows
Loop Exits
Plaln Edges

•NUS.BAS
~nus (A)

Q Cyclomatic 70

0

. 0

I

I
' !

i
I

I I

\ t

Wed Apr 13 i4:24
UpW?,/"'d Fl.:.'W:-'

Loop Exits
Plain Edges

----- -::.i+~-c-_::::::---:=~---------
-.

0

I
I
I

\

o\

\

0

I
I

1 i I I ! I

MdiJUS . Bt-S :
Sll~: MenuJ (()

B~~ic I :
ctrplexiiy/72

: I

: I I.
I
I

!

\
I
I

. l '1 ' I I '
IC I I
! I I I

ii i /
I I I I

(I I I

I q
' I I·

: I l'. ! ~

I \ I
I I 11
I I I

\ \ (
I I I I
I I I ~

;I \ I . \
I I I l
l I I l . . I

l
I
I

i \
I \ ' ,,

\

\
I ,

• I
It

'. I
I I
j '
I I

: '
: I
11

I I

'.I

" "
:1 ,
I
I

r
ii
ll

I ~
I j

I '.
; \ I
I I I

I \ I
\ ; , .
'j
~
\

l·.
I \ \ • i
\ I I 1 I ,

' \ I ' I ·,,

·, · .. I '\ \
\. i

, \ I \
• I I

I
I

I I
I

i

l
: .
\
.
\
~ I
\ ;

\ 1
\ I 1,,

'·I

' r\
\

I I
I 1

I \
' \
I I

\
. ' \\ I I I

\!\ \' \1'
I I

I

' 4 \ ,, ',
,. '. i •

I, \ r. h
, I \ I I

\ \ \ I : \ \ \ , ; I \ . , \ \ ,, : \ I
\ ! , , ~, I

' \ \ \ I I \

\ ~I \ \~ 1' \:

\ " \ r \ ,i
\ : \ \~ \: ..
\,I \ I\ '~., l \,_ !

!, \ : \ : '-, ; \ ;
1 '- ', I ··t 'k, 'i
I ', .,! ... , I"- ... :·,'-. I' ",,: '-,','
I "\ ·, I "

~ ' ' ·--'

-.!::i:.

I I \ .
I

L.:. ... =xi":· 1

Plain Edge9 \i
p

Wed Apr 13 12:51

I

i
I

i

I
I

I I I

I /
_I I

I

11
I \

\
I

\ '

I
\

I ~

I \
I \

I I
I

\

I /

' i i /

;1
/ I

I
/

i

/.
/'

/I
/

I

j

~~~~~~~~B 



0 

Sandia 
National 
Laboratories 

PRODUCT 
DESIGN 

AUTOSPEC 
TEST TOOL 

"T" 

0 y 

TESTER 
DESIGN 

DISK 

DISK 

DIAGRAPH 

I D I 
I z I 

0 

PATS 
TOOL 

SOFTWARE 
TOOL 

"PATs" 

PATS 
TOOL 

DISK I E I 

DISK I G I 

TEST 

DYMANIC 
TOOLS 

TCAT,STCAT 

DISK I H I 

0 

88G7000.53 



0 

BBF7000.16 

0 

DYNAM~C TRACE TOOLS 

{TCAT, S--1'CAT) 

TOOLS WHICH INSTRUMENT THE 
OPElRATIONAL CODE AND PROV~DE 
TRACE AND COVERAGE REPORTS 
BASED UPON THE TIEST CASlES 
GENERATED 

0 

Sandia 
National 
Laboratories 



0 

88F7000.20 

SOURCE 
PROGRAM 

INSTRU­
MENTATION 

INSTRUMENTED 
PROGRAM 

LOAD 
& RUN 

TRACEFILES 

GENERATE 
REPORTS ~ 

0 0 

TCAT /BASIC 
SYSTEM COMPONENTS 

MANIPULATE 
TRACEFILES 

s,v 

1 
ARCHIVE 

FILES 

Sandia 
National 
Laboratories 



0 0 0 

OVERVIEW OF TCAT /BASIC FOR HP BASIC 3.0 

I DOS HP - BASIC 3.0 I 
BASIC SOURCE - BASIC SOURCE 

PROGRAMS ~ PROGRAMS 

v 
- REFERENCE ,~ 

INSTRUMENTER ,... 
LISTINGS 

v 
INTRUMENTED - TCAT RUNTIME PROGRAMS .... 

t 
TEST 

EXECUTION 

t 
TRACEFILES -

, J • 1 

COVERAGE -- TRACEFILE QUICK.C1 
ANALYZER 

~ 

COMPACTOR ANALYZER 

v * * COVERAGE COMPACTED QUICK COVERAGE 
REPORTS TRACEFILES REPORTS 

. . @) Sandia National Laboratories 88G7000.61 



b 0 

SPECIFICATION QUALIFIED -- DYNAMIC 
TOOLS 

1111 
TCAT,STCAT 

I B iJ DISK , I A 

SIPEC. TEST I G I SYSTEM TEST 
CASES ~ DISK CASES 

DATA 

PRODUCT F.A.T. 

-- DYNAMIC 
TOOLS 

ID iJ 
~ 

TCAT,STCAT 

, ' I z 

SPEC. TEST I H I OTHER 
C-"\SES -I>-- DISK TESTS 

DATA 

88F'i'000.24 

-- DYNAMIC 
TOOLS --

, 

--0,-
DATA 

-- DYNAMIC 
TOOLS 

- TCAT,STCAT -

' 
~ 

DATA 

Q 

-

DISK I H I 

DISK I I I 
Sandia 
National 
Laboratories 



0 

88G7000.31 

0 0 

LANGUAGE PARSERS (8 IDENTIFIED TO DATE) 

LWP 

. EQ TEST CASE FILES 

SYSTEM TEST CASE FILES 

SPECIFICATION HS 

STATIC TOOLS (3) 

DYNAMIC TOOLS (3) 

STATISTIC TOOL 

CALLING CHART 

GRAPHICS 

INSTALL 

AUTOMATIC FLOW CHART GENERATOR 

Sandia 
National 
Laboratories 



0 0 

TESTER FAB 
SRR PRELIMINARY 

4 4 
I I 
I I 

I 

REVIEW 

TASKS PQT 

FINDING 
FORMS 

SCPD PLAN* 
( fl) ) -- SPECIFICATION 1---1~ 

- TOOL 

SCPD • SYSTEM CERTIFICATION PLANNING DOCUMENT 

PQT - PRODUCT QUALITY TEAM 

PTRD - PRODUCT TEST REQUIREMENTS DOCUMENT 

PS - PRODUCT SPECIFICATIONS 

PQD - PRODUCT QUALIFICATION DOCUMENT 

SRR - SYSTEM REQUIREMENTS REVIEW 

88F7000.40 

I 1 I DATA FILE 

0 

PQD ( fO) 

Sandia 
National 
Laboratories 



. 
0 

I -
SYSTEM I ~ 

DOCUMENT 

-

-

88F7000.22 

PRODUCT 
DESIGN 

' 

PRODUCT 
TESTER 

+ 

HARD 
COPY 

0 

--

AUTOSPEC 
TEST TOOL 

''T" 

DIAGRAPH 

TESTER 
DESIGN 

DISK I D I 
DISK I z I 

SOFTWARE 
- TOOL -

"PATs" 

- ~ -
--

PATs 
TOOL 

DIAGRAPH 

0 

--

DISK I F I 
--

DISK I E I 

Sandia 
National 
Laboratories 



0 0 0 

TEST & CALIBRATION SOFTWARE: DESIGN, CODE-, TEST 88F7000.25 

SDR 

TOR 

TEST 
PLANS 

TASKS 

HQ PLAN (x) 

SDR - SOFTWARE 
DESIGN REVIEW 

TDR - TESTER DESIGN 
REVIEW 

SIR· SPECIFICATION 
IMPLEMENTATION 
REVIEW 

HARDWARE 

STATIC 

DYNAMIC 
TOOL 

[:F 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

HP 
200/ 
300 

TEST 
REPORT 

l--4- PRODUCTION AGENCY.,.._, 

STATIC 

DYNAMIC 

TEST 
CASES 

~~ 
~ 

DATA 

HP 

SPECIFICATION 
CONFORMANCE 
REPORT. 

HQ PLAN (y) 

~i-------SNLA QA-------c~I 

Sandia 
National 
Laboratories 



0 0 0 

~ 
I 

PQ TEAM---------=-~~jp .. I ~SNLA~1 

I 
i----c CALIBRATION a----=1 PAQR 

• 

88F 7000.39 

• 

REPEAT ABILITY 
STUDY • 

I 

TEST CASES I I -

S TCAT 

I 

,1, 
~ 

TEST 
REPORT 

-

DOCUMENT 
REVIEW 

I I 
I I 
I 

QER 

FAT 

PAQR - PRODUCTION AGENCY 
QUALITY REVIEW 

QER - QUALITY ASSURANCE 
ENGINEERING RELEASE 

FAT - FINAL ACCEPTANCE 
TESTING 

Sandia 
National 
Laboratories 



() 

DISK I B 

SPEC. TEST 
CASES 

S!PEC. TEST 
C.ASES 

BBG-7000.54 

--

~ 
.. 
DATA 

I> 

.. 

DATA 

DYNAMIC 
TOOLS 

TCAT,STCAT 

, . 
~ 

DYNAMIC 
TOOLS 

TCAT,STCAT 

1 I 

~ 

C) 

SPECIFICATION QUALIFIED 

I A 

I G I SYSTEM TEST 
DISK CASES 

PRODUCT F .A. T. 

lz~ 
I I 

OTHER 
DISK H TESTS 

-- DYNAMIC 
TOOLS -

' 

__... 
DATA 

-- DYNAMIC 
TOOLS, 

~ 
TCAT,STCAT 

\ V 
~ 

DATA 

0 

--

DISK I H I 

-

DISK I I I 
Sandia 
National 
Laboratories 



0 

0 

0 

Edward F. Miller 

Software Research, Inc. 
San Francisco, California 

Topic: Starting a Q.A. Testing Group from Scratch 

Edward Miller is President and Technical Director of Software Research, Inc. (SR), 
San Francisco, California. SR specializes in software quality management and high 
quality software engineering. Dr. Miller has worked in the software quality 
management field for 20 years in a variety of capacities. He has been involved in the 
development of families of automated software and analysis support tools. He was 
chairman of the 1985 First International Conference on Computer Workstations, and 
has participated in IEEE conference organizing activities for many years. He is the 
author of Software Testing and Validation Techniques (Second Edition), an IEEE 
Computer Society Press tutorial text. Dr. Miller serves as chairman of SR's Quality 
Week and will present the 1-day seminar: Advanced Software Test Methods. 



0 

0 

Vern Crandall 

Brigham Young University 
Provo, Utah 

Topic: Software Quality: Product Verification, Design Analysis, and Code 

Vern Crandall started the software engineering curriculum at Brigham Young 
University in 1975. Dr. Crandall currently teaches a novel course in which students 
test commercial software submitted by major companies nationwide, including 
NOVELL, WordPerfect, Microsoft, and IBM. For the past ten years, in addition to 
teaching at BYU, he has taught software design and improved programming 
technology worldwide for IBM. Dr. Crandall started in the computer business 35 
years ago, working in his father's service bureau, and majored in Biomathematics in 
Medical School. · 



0 

0 

0 

SOME THOUGHTS ON SOFTWARE QUALITY 

PRODUCT VERIFICATION TESTING 

DESIGN ANALYSIS 

CODE QUALITY 

DR. VERN J. CRANDALL 

BRIGHAM YOUNG UNIVERSITY/NoVELL CORPORATION 

QUALITY WEEK 

SOFTWARE RESEARCH, INC. 

SAN FRANCISCO, CALIFORNIA 

MAY 13, 1988 



0 
OVERVIEW 

INTRODUCTION 

PRODUCT VERIFICATION TESTING 

DESIGN ANALYSIS 

CODE QUALITY 

0 
• CONCLUSIONS 

0 



0 

0 

0 

3 

INTRODUCTION 

TESTING--WHILE IT HAS BEEN AROUND SINCE PROGRAMMING CAME 

INTO BEING--IS STILL A NEW, SOMEWHAT UNDEFINED AREA, 

• 

• 

IT LACKS CONSISTENT DEFINITIONS, 

IT LACKS STRATEGIES, 

IT LACKS METHODOLOGIES, 

IT LACKS FRAMEWORKS, 

IT LACKS AUTOMATED TOOLS, 

IT LACKS MANAGEMENT SUPPORT AND ADEQUATE 

BUDGET AND TIME, 

EVEN THOUGH MANY BOOKS HAVE BEEN WRITTEN ON THE 

SUBJECT. 



0 

0 

0 

• 

4 

INTRODUCTION 

MUCH HAS BEEN WRITTEN AT THE UNIT TEST LEVEL. 

SOME HAS BEEN WRITTEN AT THE INTEGRATION AND SYSTEM 

TEST LEVEL. 

PRACTICALLY NOTHING HAS BEEN WRITTEN AT THE DESIGN 

ANALYSIS LEVEL OR THE PRODUCT VERIFICATION LEVEL. 

A MAJOR CONSIDERATION IS THAT IT IS DIFFICULT TO COME UP WITH A 

FRAMEWORK FOR TESTING AN ENTIRE PRODUCT AND HAVE IT APPLY ACROSS 

A NUMBER OF DIFFERENT PRODUCTS. EAcH PRODUCT SEEMS TO HAVE A 

DIFFERING SET OF CHARACTERISTICS WHICH MUST BE TESTED IN 
.. 

COMPLETELY DIFFERENT WAYS. 

BECAUSE THE SOURCE CODE AND SOFTWARE ARCHITECTURE 

DESIGN DOCUMENTATION ARE RARELY AVAILABLE TO THOSE 

DOING PRODUCT VERIFICATION TESTING, TESTING MUST 

REVOLVE AROUND USER'S MANUALS, SCREENS AND SCREEN 

DOCUMENTATION, AND HELP FILES. 



0 

0 

0 

5 

INTRODUCTION 

SINCE THESE THREE AREAS ARE SELDOM--IF EVER--ADDRESSED, 

I WILL BRIEFLY DISCUSS: 

PRODUCT VERIFICATION TESTING 

DESIGN ANALYSIS 

CODE QUALITY 

FROM A TESTING AND MAINTENANCE POINT-OF-VIEW. 



0 

0 

0 

6 

INTRODUCTION 

SOFTWARE DEVELOPMENT HAS THREE GROUPS WITH OFTEN 

CONFLICTING GOALS: 

SOFTWARE DEVELOPERS--"CORRECTNESS" AND 

EFFICIENCY, 

SOFTWARE TESTERS--EASE OF TESTING, 

SOFTWARE MAINTENANCE PROGRAMMERS--EASE OF 

MAINTENANCE. 

USUALLY SOFTWARE TESTERS AND SOFTWARE MAINTENANCE 

PROGRAMMERS HAVE SIMILAR--OR THE SAME--GOALS, BUT NOT 

ALWAYS! 

ALL THREE GROUPS SHOULD BE INVOLVED WITH EACH OTHER 

ACROSS THE SOFTWARE DEVELOPMENT LIFE CYCLE TO PROVIDE 

FOR THE BEST COMPROMISE AMONG THE COMPETING GOALS, 

DESIGN REVIEWS, 

CODE INSPECTIONS. 

TEST CASE INSPECTIONS, 

ETC. 



0 

0 

0 

7 

PRODUCT VERIFICATION TESTING 

DEFINITIONS IN THE TEST ENVIRONMENT: 

PRODUCT VERIFICATION TESTING IS LOOKING AT "CORRECTNESS" AND 

"QUALITY" OF A SOFTWARE PRODUCT FROM THE OUTSIDE-IN. IT 

DIFFERS FROM STANDARD, WELL-KNOWN TEST PROCEDURES IN THAT 

ONE DOES NOT LOOK AT THE CODE OR THE SOFTWARE STRUCTURE, 

RATHER, ONE EXAMINES THE PRODUCT FROM THE USER'S 

PERSPECTIVE. 

TYPES OF TESTING PERFORMED IN THIS CONTEXT ARE: 

USABILITY TESTING: 

TEST THE RELATIVE EASE OF USING THE PROGRAM, ITS 

SCREENS, FUNCTIONS, USER'S MANUALS, ETC.--FROM THE 

USER'S POINT-OF-VIEW. ARE THE PF KEYS CONSISTENT 

FROM SCREEN TO SCREEN? ARE THE SCREEN FORMATS 

CONSISTENT, CLEAR, AND EASY TO FOLLOW? ETC, 

FUNCTIONALITY TESTING: 

TEST THAT ALL THE FUNCTIONS NECESSARY FOR THE 

OPERATION OF THE PROGRAM FROM THE USER'S POINT-OF~ 
~ ARE PRESENT--AND ARE EASY TO IDENTIFY AND 

EXECUTE. CAN A USER DO WHAT HE/SHE WANTS TO DO 

WITH THt P~CGRAM? 



0 

0 

0 

8 

PRODUCT VERIFICATION TESTING 

DEFINITIONS IN THE TEST ENVIRONMENT: 

• 

PERFORMANCE TESTING: 

TEST THE PERFORMANCE OF THE PROGRAM. Do ALL THE 

FUNCTIONS OPERATE FAST ENOUGH? ARE ALL OPERATIONS 

CONSISTENT FROM SCREEN TO SCREEN, POINT TO POINT 

WITHIN A SCREEN, ETC.? ARE THERE UNNECESSARY KEY 

STROKES IN GETTING FROM FUNCTION TO FUNCTION, 

ETC.? 

RELIABILITY TESTING: 

TEST THE ABILITY OF THE PROGRAM TO PERFORM 

CONSISTENTLY OVER LONG PERIODS OF TIME--IN 

CONNECTION WITH THE HARDWARE--WITHOUT PRODUCING 

SYSTEM CRASHES, DATA (OR CALCULATION) INTEGRITY 

PROBLEMS, OR 1/0 ERRORS. [ETC.] 



0 

0 

0 

9 

DESIGN ANALYSIS 

ERROR TRACKING 

THE ONLY WAY TO DETERMINE THE COST OF FINDING AND 

FIXING ERRORS AND DETERMINING WHEN AND WHERE THEY 

SHOULD HAVE BEEN FOUND IS THROUGH ERROR TRACKING. 

A MECHANISM MUST BE PUT IN PLACE TO CAPTURE ROUTINELY 

INFORMATION ABOUT ERRORS--INCLUDING ERRORS WHICH 

PROGRAMMERS FIND WHILE DESIGNING, PROGRAMMING, CODING, 

AND COMPILING THEIR PROGRAMS. 

ERRORS SHOULD BE TRACED BACK INTO THE CODE TO THE 

ACTUAL MODULE IN WHICH THEY OCCURRED; THEY SHOULD BE 

TRACKED BACK INTO THE LIFE CYCLE TO DETERMINE WHETHER 

THEY COULD HAVE BEEN CAUGHT EARLIER WITH APPROPRIATE 

DESIGN REVIEWS, CODE INSPECTIONS, OR TESTING. 

CHECKLISTS AND OTHER SAFEGUARDS SHOULD BE PUT IN PLACE 

EARLY IN THE LIFE CYCLE TO AID IN FINDING THESE ERRORS 

AT POINTS AND TIMES WHERE THEY ARE RELATIVELY 

INEXPENSIVE TO FIND AND FIX. 



0 

0 

0 

10 

DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

TESTING CAN BE MADE MORE EFFECTIVE BY ANALYZING THE PROGRAM 

AND TESTING CODE WHICH IS MOST LIKELY TO CONTAIN ERRORS, 

CODE LIKELY TO CONTAIN ERRORS CAN SOMETIMES BE DETERMINED 

THROUGH SEVERAL MEANS: 

EXPERIENCE: SOME CODE TENDS TO BE ERROR-PRONE BY ITS 

VERY NATURE, E.G., ERROR HANDLING ROUTINES. EXPERIENCE 

ACROSS SEVERAL PROJECTS CAN POINT TOWARD SUCH AREAS. 

ASSOCIATING ERROR RATES WITH CERTAIN TYPES OF MODULES 

CAN AID IN IDENTIFYING THEM. 

DESIGN QUALITY: WHERE POOR SOFTWARE ARCHITECTURAL 

DES I GN (MYERS' CONCEPTS) IS PRES ENT, ERRORS TEND TO 

OCCUR. 

CODE QUALITY: WHERE CODE IS UNNECESSARILY COMPLEX AND 

CONTAINS MANY UNSTRUCTURED STATEMENTS, ERRORS TEND TO 

OCCUR, 



0 

0 

0 

11 

DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

HALSTED' S SoFTWARE Sc I ENCE METRIC: HALS TED ' S MEASURE 

HAS TENDED TO BE A GOOD PREDICTOR OF ERROR RATES IN 

SOME SOFTWARE PROJECTS. ROUTINELY CALCULATING IT AND 

RELATING IT TO ERROR RATES CAN.VALIDATE ITS USE IN YOUR 

ORGANIZATION, 

McCABE'S COMPLEXITY MEASURE: WHEN MCCABE' S MEASURE 

BECOMES GREATER THAN 10, THERE IS A STEP FUNCTION IN 

THE ERROR RATE (IN MANY STUDIES), IT CAN BE USED TO 

REGULATE MODULE SIZE (AS LONG AS IT IS NOT MISUSED) AND 

TO POINT TO ERROR-PRONE MODULES. 



0 

0 

0 

12 

DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

IMPROVED TESTING STRATEGIES CAN MAKE THE 

TESTING PROCESS MORE EFFECTIVE: 

ANALYZE SOFTWARE ARCHITECTURE 

(DESIGN ANALYSIS): 

MINIMAL TESTING ON CODE MOST OFTEN USED (LET 

ALPHA-TESTING CATCH MANY OF THESE ERRORS). 

MAXIMUM TESTING ON CODE WHICH IS DETERMINED 

TO BE CRITICAL TO THE OPERATION OF THE 

SOFTWARE AND .ON CODE WHICH ( THROUGH PROPER 

USE OF METRICS) HAS BEEN DETERMINED TO BE 

POTENTIALLY ERROR-PRONE. 

MINIMAL TESTING ON CODE WHICH IS NON-CRITICAL 

(ONLY USED BY "EXPERTS" DOING "NON-STANDARD" 

FUNCTIONS) OR (ONLY THERE TO HANDLE RARE, BUT 

NON-STRATEGIC "WHAT IF?" CONDITIONS), 



0 

0 

0 

13 

DESIGN ANALYSI~ 

DESIGN ANALYSIS USING METRICS 

FORCE ERROR-PRONE MODULES TO BE RE-DESIGNED AND 
RE-PROGRAMMED! ON IMS, THEY FOUND THAT 20 % OF 

THE MODULES PRODUCED 80% OF THE APARS! 

REPROGRAMMING THEM EARLY-ON WOULD HAVE PRODUCED A 

SUBSTANTIAL SAVINGS TO THE OVER-ALL COST OF THE 

PRODUCT, 

WHEN A MODULE CONTAINS TOO MANY ERRORS, HAS A HIGH 

COMPLEXITY METRIC, HAS TOO MANY VIOLATIONS OF CODE 

QUALITY OR GOOD PROGRAMMING PRACTICE, OR IS HARO 

TO READ OR UNDERSTAND, IT SHOULD BE CLASSIFIED AS 

ERROR-PRONE AND BE RE-DESIGNED AND RE-PROGRAMMED, 



0 

0 

0 

14 

MEASURES OF CODE QuALITY 

READABILITY IS MORE IMPORTANT THAN STRUCTURED PROGRAMMING 

CONSIDERATIONS 

PROPER PROGRAM ANO PROPER PROGRAM SEGMENTS 

SINGLE ENTRY/SINGLE EXIT 

• 

ALL CODE "REACHABLE" (NO "DEAD" CODE) 

ALL LOOPS "FINITE" (No "ETERNAL" LOOPS) 

MAINTAINABILITY 

(USE OF SMALL NUMBER OF PATTERNS AND STRUCTURES) 

. 3 BASIC STRUCTURES 

SIMPLE SEQUENCE 

ITERATION 

(00 WHILE STRUCTURE UNLESS USE OF OTHER STRUCTURES 

JUSTIFIED) 

SELECTION 

(CASE STRUCTURE UNLESS USE OF OTHER STRUCTURES 

JUSTIFIED) 

USE "CORRECT" STRUCTURE 

Do NOT BRANCH OUT OF LOOPS 

(8iJ... EXIT CONDITIONS SHOULD BE SPECIFIED IN THE BOOLEAN 

EXPRESS I ON OF THE WHILE STATEMENT. (NESTED) IF THEN 

ELSE'S SHOULD BE USED TO CREATE EXIT CONDITION,) 

Do THINGS IN THE "SAME WAY" AS MUCH AS POSSIBLE 

(US~ "VARIATIONS" ONLY W~~N JUSTIFIED BY SOME CRITERIA) 



0 15 

MEASURES OF CODE QUALITY 

COMPLEXITY 

No NESTED IF THEN ELSE 1 s 
(EXCEPT FOR SEQUENTIAL ERROR (OR OTHER TYPE) 

PROCESSING) 

USE CASE STRUCTURE (WITH DOCUMENTED BOOLEAN 

EXPRESSIONS) IN PLACE OF NESTED IF THEN ELSE I S FOR 

ALTERNATIVE PROCESSING) 

AFFIRMATIVE PROGRAMMING 

(TEST AND DEFINE ALL DEFAULT CONDITIONS. USE CASE STRUCTURE 

Q IN PLACE OF IF THEN ELSE'S) 

0 

ROBUSTNESS 

CODE SHOULD ALWAYS RUN TO COMPLETION 

AVOID USE OF REPEAT UNTIL STRUCTURE 

VALIDATE ALL INPUT DATA TO MODULE 

(BUT DO NOT CAUSE "RESTRICTIVE MODULES 11
) 

PROGRAMMER ASSUMPTIONS 

SEGMENT DEPENDENCIES 



0 

0 

• 

0 

16 

CONCLUSIONS 

THESE AREAS HAVE BEEN PRESENTED TO RAISE ISSUES RATHER 

THAN TO PRESENT ANSWERS, 

MORE RESEARCH NEEDS TO BE DONE IN THE TESTING AREA-­

ESPECIALLY AT THE SOFTWARE ARCHITECTURAL AND PRODUCT 

LEVELS. 

CODE QUALITY--IN TERMS OF "TESTABILITY" AND 

"MAINTAINABILITY"--SHOULD BE DESIGNED FOR AND INSISTED 

ON IN SOFTWARE DEVELOPMENT. 

BETTER DEFINITIONS NEED TO BE CREATED FOR TESTING AT 

THE SOFTWARE ARCHITECTURAL AND PRODUCT LEVELS, 

MORE AUTOMATED TOOLS NEED TO BE MADE AVAILABLE TO AID 

IN TESTING AT THE SOFTWARE ARCHITECTURAL AND PRODUCT 

LEVELS. 

TESTING SHOULD BE TAUGHT AS A DISCIPLINE--AN INTEGRAL 

PART OF COMPUTER SCIENCE--NOT AS AN AFTERTHOUGHT, BOTH 

IN THE UNIVERSITY AND IN INDUSTRY. 



·O 

·D 

Mack W. Alford 

Ascent Technology 
San Jose, California 

Topic: A Constructive Approach to Test Planning 

Mack Alford has 26 years of experience in software development and research in 
methods and tools to support specification, design, and testing of realtime embedded 
distributed software. He has authored more than ten articles on software 
requirements and design techniques in professional conferences and publications. 
Mr. Alford is an internationally recognized expert in System and Software 
Requirements and Design Methods, having presented tutorials in West Germany 
and Japan. 



0 

0 

A REQUIREMENTS DRIVEN DESIGN APPROACH TO TEST PLANNING 

MACK ALFORD 
ASCENT LOGIC CORPORATION 
180 Rose Orchard Way, Suite 200 

San Jose, California 95134 

1. INTRODUCTION . 

With the imposition of MIL STD 2167 (and its revisions) on the software development process, a 
renewed interest has been placed on the issue of test planning for critical software. To ensure that 
end product software will have the required capabilities, there are now requirements to subject the 
software to systematic, thorough testing, and that the test plans and test procedures be documented 
in advance of software coding, and test results be documented when testing is completed. 

The purpose of this paper is to identify a current deficiency in the state of the art, i.e., the lack of a 
constructive method for deriving a test plan from requirements and design information; and to 
present a constructive test planning approach which exploits the content of the requirements/design 
information resulting from the use of ihe Requirements Dr,ven Design concepts which 
underly the Distributed Computing Design System (DCDS) [l]. · Section 2 will present a brief 
overview of the current state of the art of test planning, and *1ote SOJ11e of its deficiencies. Section 
3 then presents an overview of the Requirements Driven ·Design concepts which underly the DCDS 
methods and tools, and how the resulting information is used to constructively generate a test plan. 
Section 4 draws some conclusions from the discussion. 

2. AN OVERVIEW OF THE STATE OF THE ART 

MIL ~TD 2167 requir~s that test plans be written, and requires traceability from any test back to 
the requirements and design element tested. An overview of the required content of a test plan is 
presented in Section 2.1. Unfortunately, the method used to systematically identify tests is left to 
the ingenuity of the developer. Unlike requirements and design methods, where literally hundreds 
of software requirements/design methods have been published, there is a distinct lack of methods 
available for the construction of test plans. At best there is a test planning "folklore" of the kinds 
of testing that are needed to sufficiently exercise software. Some of the content of the folklore is 
discussed in Section 2.2 below. A discussion with software test professionals will yield the 
identification of perhaps two methods for test planning -- the document driven method, and the 
Deutsch method. The deficiencies of these methods are discussed in Sections 2.3 and 2.4. 

2.1 The 8 Dimensions of a Test Plan · ·· '."·· · · · · ._. ,: ~ ... :::<:~:: ~i: . .''}; . .: ,, ... 
A test plan identifies all of the tests to be perfonrted on the components_-ofthe' sqftwzjc: ·:bfie-:wii-f;,_,\<.,:'·t: 
to view a test plan is that it must specify 8 different aspects of each test and th#t u,:i~~l~JiAA~nip_s~ ~ ~-~ .~ .: 
A brief description of the 8 aspects is presented below. · · · ~. : ."i'.~~·;·,:s. :·': :,. · .'.':~: ·· '·c;·;:" .. ~:-- · · 

, ,, ~-. ~ 11 'l<,~.,_., r .. ,.. ,.r ~ "'· • 

1. requirement to be tested -- identifies which requirement frQtn the require~ti~:~~m~n.t. . · 
is being addressed. Note that the total of all tests shQu,ld;-~St·aU req~~nien~.f-~.t;,' ;,"-,~_,, ~' ': __ :\~_::'.·~,, 

2. software to be tested -- early software tests- usually ._exe_rcise .only a ·pp~9n:-bf :th'¢ ... · ,:-~ · 
software modules. This allows some programming and testing to be concll;t!CQ.t,:>:~gt :·:·.;_:J-:;'i.::' 

3. when the test is ·to occur -- this defines the preconditions for a test (e~g .. :,; .. ~~q~.~t~r,·. \.' .­
must have previously been successfully completed, .and the expected-date:": on.\Y.~ie~tij~J(l_i.~ 
test is to occur. The te~t plan should avoid a test plan with a strict sequence of teSts;f_.itY·~~ 
one test fails, and time will be required to fix the software before retest,.iji~ ~~ters -~. ;;· 
should be able to move on and execute other tests. · :·····. . ·· ·· · .· .:_.:,:-~,:~,; 

4. hardware required -- some early tests can be performed on the host piocessorvused ~:; ': .. 
develop the code (e.g., unit testing), while other testing requires·execution on·.:a.fully /\ .. , 'S 

.... •'' :·. 
:·, • - ... i• .... ~ 

Hl '··· 



Populated distributed target processor. A strategy for moving from host to fully 
populated target architecture may have to take into account limited availability of (]).· 
hardware during early development, problems in scheduling the hardware for test, and 
take into account the inability to extract information from a target processor. 

5. kind of test -- this identifies a unit of software is to be tested with stubs for the 
procedures it calls, or whether the modules are to be included; whether the test is open 
loop with the environment, or whether a closed loop simulation of the environment is to 
be included; whether functionality and accuracy are being tested, or whether execution 
and/or response times are to be measured. 

6. support software required -- the support software varies according to test. Bottoms up 
unit testing requires some sort of scaffolding to insert data and extract and analyze the 
results; top down unit testing requires the generation of stubs; closed loop testing with 
the environment requires an environment simulator of some sort. Tests which verify 
some level of testing completeness measures (e.g., every branch or path for unit 
testing, every procedure called for integration testing) require some additional test tools 
to measure this completeness. This software must be specified, developed, and tested 
before it can be used to test the target software. Frequently, the specification and 
testing of environmental simulators may require larger development efforts than for 
development of the target software, and impose additional constraints on the availability 
of the target hardware. 

7. test case inputs and outputs -- sometimes a set of paths will first be tested with inputs 
·· from a small number of objects, and later tested with a maximum legal load set of 

inputs, and finally with inputs which are supposed to exercise the load-shedding or 
"graceful degradation" features of the software. Since different input scenarios may 
stress the software system at different points, any of several test cases may be executed 
by the software for a given test. The preparation of the different test case inputs may 
require substantial effort. Q 

8. original vs. regression test -- the criterion for passing an original test is that the outputs 
be within allowed tolerances of expected outputs. When modifications to the software 
are made, and results of some previous tests are not supposed to be affected, then a 
regression test is performed, where the acceptance criterion is that the test outputs of the 
modified software should match the previous outputs exactly. This occurs frequently 
when errors are corrected or capabilities are upgraded. A regression test can be totally 
automated (thereby taking less person time) but require substantial blocks of processor 
time. 

2.2 The Test Planning "Folklore" 
If one talks to a practitioner of software testing, one will discover that the state of the practice can 

. be loosely called "folklore". There are no well known methods in use compared to the state of the 
?.:tt:M ... .in. sof~are design, where many designers use one form of Data Flow diagrams or another. 
~.:a:Qyl~v:~. if one: ~ets in on a test plan review, one will discover that there is a well estabslished 

folkfore. o~ pie kinds of testing that must be done: 
· . • tfnit Testing - the tests of a unit of code without the lower level units that it uses or 

2~! ... _:_.L,/ .,"; c~s i. ~ ...... 
5 1fa r:; 1 ~!,M(?dule .t~stin"g'"·-tthe _tests of a unit of code which includes the lower level units that it 
~rlt c.',t.. :1-.uses"_<:,rcalls ·. . f.l 

: ·• lnterf,3-Ge testing - the tests of the interface mechanisms used by the software to 
• •••• c. commimicate with other system components (e.g., input/output, but no processing) 

ix.~<;: •· .•"~ad testing':' the te~ts of a "stimulus-to-response thread" of processing of the 
·.2,1· · ·J.,Y~:,software as~~ wpole, verifying that the input plus state yields the correct output plus 
irlJ c- J'.. :i: . · .state.J,tpda,tes. 

• functio1i'testing - the tests of a "function" of the software, to demonstrate that the 
·;. · ····software behaves correctly to the input of a sequence of items(e.g., testing the Q 

"tracking" function by insertion of multiple track returns) 

H2 



• 

0 

0 

0 

• object testing - the tests of the software demonstrating that a single object makes all of 
the required transitions between functions (e.g., demonstrating that an object is first 
detected. then tracked) 

• multi-object testing - the tests of the software to demonstrate that multiple objects are 
handled correctly, including some "load testing" to demonstrate that the software 
handles the required full load and has the required "graceful degradation" properties 
if more than the maximum load is input 

• exception testing - the test of the software to demonstrate that the software responds 
correctly to various "exceptions" (e.g., hardware exceptions, communications 
failures, algorithm failures) 

There are schools of thought on how the testing should be accomplished, sometimes resulting in 
heated discussions on the relative merits and disadvantages of different test strategies. For 
example: 

- every one agrees that the "big bang, ship on first normal termination" mode of testing, 
in which all modules are combined for the first time and tested, is insufficient to 
achieve anywhere near the desired software reliability. However; it is pointed out 
that the MILSTD 2167 requirements were developed as a protection against this 
kind of thinking. 

- the "bottoms up" school of testing states that the lowest level modules should be unit 
tested, then combined into higher level modules, and so on until the software as a 
whole can be tested. This method has admitted strengths (i.e., much of the lower 
level testing can be perfomed independently by many developers) and weaknesses 
(i.e., it is not until the highest level modules are merged that interface problems are 
detected. requiring substantial re-work and schedule slippages). 

- the "top down" school of testing states that one should first test the Job Control 
Language, then add the top level program module, and then add the modules one at 
a time from the top down. This has admitted advantages (i.e., interfaces are tested 
at the same time as the transformations during unit testing), but also admitted 
disadvantages (i.e., if the software is complex or large, it is difficult to find the 
particular set of inputs which will force a specific path 10 or 15 layers down in the 
subroutine hierarchy -- this has sometimes been referred to as "pushing with a 
rope"). 

- the "sideways in" school of testing, in which the top down and bottoms up methods 
are mixed together. 

Unfortunately, none of this discussion addresses the critical problem of how one identifies the 
tests. 

2.3 The Document Driven Method .- ,J· ~-

The document driven method of test planning is to take each paragraph of the requirements 
dC!cument an~ attempt to construct tests which woul~ de~onstrate the co~p}~?fi~e: ?f 'tt.1~~f~are 
with the requirements. There are several problems with this approach. · ·J • 

1 
..,,., : '· 

,.J(_ ~. t • ! I _.~ t 

First, the requirements documents paragraphs are usually not testable 3:s tll~y stahd~·- To address 
thie problem, the analysis phase of test planning extracts a set of "d.p_a'.!Jilitie,s'' :frOJJ1- the 
requirements document which are either explicit or implied. The test plan ~e~ ad_dresses the 
testing of these "capabilities". The definition of a "capability" is largely subjec!:ive._ .. ·. :. :·. ,1 • 

. ' l• l - • 

A second problem is that the usual mapping of requirements onto the design elemen~ fs expressed 
via a matrix or table of paragraph vs. design element. Analysis of such matrices ,dem~nstrate~ that 
the content of the traceability matrices is subject to a great deal of inletpre'tatjon -- thus the 

I • 
/' 

H3 



identification of the modules of software necessary to test a specific requirement or capability may 
require a great deal of anlaysis. Q 
Finally, even if each requirement is associated with a specific subset of the design, the document 
driven method does not address the remainder of the critical test planning issues -- the strategy for 
combining and testing modules in a time sequence, the strategy for dealing with the host/target 
dichotomy, the requirements for the environmental simulator, etc. 

2.4 The Deutsch Method 
The method presented by Deutsch [2] is the first published approach known to the author to 
integrate the representation of requirements, design, and test planning. Figure 1 presents an 
overview of the approach. 

Requirements Design Design Thread 

A - 8 - 81- 8 -A - D • 01 
F1 

F2 A • 8 • 82 • 8 • A · D • D2 

F3 A-8-A-C 

TEST SCHEDULE· WEEKS 

UI D 1 

F7 BUI D 

FIGURE 1 - OVERVIEW OF DEUTSCH APPROACH 

Reduced to its basics, the method can be described as follows: 

0 

• express the requirements as a state machine; for each discrete function of the state machine, 
identify inputs and state condition, outputs and state transitions, and the traceability back to 
the requirements document paragraphs. This will also serve to uncover inconsistencies and 
incomplete requirements, and thus can serve as a verification method o 

H4 



0 

0 

0 

• when design is complete, identify for each discrete function of the state machine a "thread" of 
module invocations required to implement the function. This will also serve to "verify" the 
consistency and completeness of the design 

• for each thread, there should be one or more "tests" which will verify that the requirements 
are satisfied by the design elements on the thread. Construct a test plan by defining the 
sequence in which the threads are tested. It is recommended that the test plan use a top­
down threaded approach, i.e., top down but adding modules one at a time to achieve a 
given thread. 

• These threads should be combined into "builds" which are incrementally developed, tested, 
and released to the customer for early testing in order to reduce the risk of having 
incorrectly translated customer intent into operating software. 

For a compete description of the method, readers are encouraged to read [2]. 

The benefits of this approach are substantial. 
• it is constructive -- for each discrete function identified at the requirements level, a collection 

of design components are identified, and a specific test must be generated. 
• the ambiguities of the requirements document are isolated to the mapping onto the state 

machine; the mapping of the state machine to design and test is clean. 
• it lends itself easily to an incremental development approach, which reduces the risk of 

delivering the wrong product. 

Unfortunately, this approach also has a number of distinct limitations, listed below: 
• Because it is based on the model of a state machine for the requirements, it is subject to the 

limitations of state machines 
1) a state machine defines conditional sequences of actions, and does not allow the 

expression of concurrency -- this alone limits its application to embedded systems. 
Attempts to extend the state machine model to include concepts of concurrency destroy 
the underlying foundation of the model. For example, use of the state machine model to 
describe the behavior of 13 elevators which stop at 30 floors in response to buttons in 
each elevator and on each floor can become overwhelming. 

2) if a state machine description becomes larger than 50 to 100 states, its behavior becomes 
unwieldy to draw and very difficult to understand, because the state machine model does 
not provide the concept of a "hierarchy" to support a "divide and conquer" strategy. 
Again, refer to the elevator problem. 

3) if a discrete function (i.e., node of the state machine graph) becomes too complex, it 
cannot be simply characterized by its outputs and state updates. For example, if one 
input can yield some combination of outputs and state updates from 6 concurrent 
decisions, each of which has 3 choices, then the "thread" might not be the correct level of 
requirement to drive the testing process (e.g., see [l]). A better unit of requirement 
might be the "path" resulting from one of the concurrent decisions - it is easier to test 15 
paths than it is to test (3x3x3x3x3x3 = 729) threads. 

4) some non-functional requirements are not directly associated with any thread of 
processing (e.g., safety requirements), and others are not even visible at the requirements 
level (e.g., if the hardware selected is subject to frequent parity errors, the software may 
have a feature to checkpoint and restart the software on detection of a parity error in a 
way which is transparent to the overall input/ouput level of processing). 

• There is an implicit assumption that the target software architecture is that of a program, 
rather than a set of concurrent tasks needed for a real time implementation. 

• Deutsch recommends a pure top down approach. It is not clear that a sideways in kind of 
approach might not be better for large complex software. 

• No approach for developing the environmental simulator is provided. 
• No approach for dividing up the testing between host processor and target processor is 

provided. 

H5 



• The approach is not currently supported by commercially available tools, which could reduce 
substantially the effort required to use it on larger projects. Q 

Thus the Deutsch approach provides some substantial advantages over the document driven 
method, but is subject to a number of limitations which hamper its application to larger projects. 

2.5 Discussion 
It appears that the lack of a constructive test planning approach can be traced back to the 
deficiencies of the models used to describe requirements and design. The document driven model 
is subject to the deficiencies of requirements specified in textual form. The Deutsch model is 
subject to the deficiencies of the state machine for the statement of requirements. Thus the search 
for a constructive test planning approach must start with a more robust representation of 
requirements and design. 

3.0 A CONSTRUCTIVE REQUIREMENTS DRIVEN APPROACH 

The constructive approach to test planning presented below is a logical consequence of using the 
methods of representing requirements and design described in [1], which can be summarized a 
Requirements Driven Design. The discussion starts with an overview of the methods for 
representing requirements, how designs are represented, and finally how the test planning 
approach takes advantage of this information. Figure 2 presents a cartoon overview of the 
approach similar to that of Figure 1. 

3.1 The Requirements Model 
The essence of the Requirements Driven Design approach to the representation of requirements is 
as follows: first define the desired system behavior; then decompose this desired behavior and 
allocate the functions onto the design elements; and finally add functions to detect and recover from 
exceptions. This can occur at a number of levels of design: allocation of system level functions Q 
between the environment and a black box system; allocation of black box system functions to 
components or subsystems (e.g., a data processor subsystem); allocation of data processing 
functions onto software design elements; or decomposition and allocation of an algorithm to units 
of code which will implement it. In this paper, we will focus on the problem of representing data 
processor level requirements and allocating them onto design elements. 

The basic building block of the description is the discrete function which accepts a discrete 
input, generates one or more discrete outputs (including state information), and transitions to a 
new state to receive the next input. When a number of discrete functions are connected by a graph 
which defines conditional sequencing, you have by definition a state machine. This part of the 
technology is not new -- a number of different researchers use the concept of state machines in 
order to represent sequencing conditions (e.g., to represent communication protocols, to represent 
actions of robots, and even to describe sequencing conditions in some data flow 
requirements/design approaches). This part of the representation method is essentially the same as 
that of Deutsch. 

To overcome the limitations of the state machine model, the Requirements Driven Design approach 
provides the ability to aggregate a graph of discrete functions into a new (larger?) building block 
called the time function. By definition, a time function accepts a structure of inputs over some 
finite period of time, and generates some structure of outputs during that period of time, until some 
completion condition is satisfied. In the same manner, a sequence of inputs or outputs can be 
aggregated into a new (larger?) building block called an item stream. Much larger behaviors can 
then be represented using graphs whose nodes are time functions which input and output item 
streams. Graphs of time functions can be further aggregated into higher level time functions, to an 
arbitrary number of levels. 

H6 

0 

.. 



.. 

0 

0 

0 

In addition to representing conditional sequences of functions, the Requirements Driven Design 
graphs provide the ability to represent various types of concurrency of functions and/or items: 

• concurrent interleaved streams of input items, specifying both partial sequencing and 
concurrency (e.g., input from each user arrive in sequence, but may be arbitrarily 
interleaved between users) 

• independent concurrent functions, with no interactions -- this provides the ability to define 
independent state machines 

• interdependent concurrent functions, requiring coordination -- this provides the ability to 
describe the desired behavior of concurrent state machines with constraints 

• replicated concurrent functions, requiring coordination (e.g., processing inputs from a 
number of users) -- this provides the ability to describe the behavior of many identical 
concurrent state machines with constraints 

Such graphs of items and functions can be used to express arbitrarily complex system behaviors in 
a hierarchical manner which are more understandable than if the behavior was represented at a state 
machine. For example, the behavior of a set of elevators would be described as the behavior of 
replicated elevators, where each elevator responded to its button inputs and inputs from a 
coordination function. 

If data processing functions are being described, and the discrete functions are complex, then they 
can be further decomposed into a stimulus-response level of description. Figure 2 indicates that a 
function has been decomposed to a stimulus-response description. The paths can be mapped 
directly onto a task, or the stimulus-response can be subdivided and mapped onto multiple paths if 
needed to satisfy response time requirements. 

In short, the Requirements Driven Design requirements approach provides mechanisms for 
overcoming the basic limitations of the Deutsch requirements model: 

• explicit representation of concurrency, including replications of identical functions 
• explicit representation of decomposition to provide a hierarchy of functions for complex 

problems 
• explicit decomposition of a complex discrete function into a stimulus-response 

representation of the concurrent paths of processing 
• explicit representation of functions allocated to the environment or other subsystems, thus 

providing the definition of the transformation to be implemented by 
simulators for closed loop testing. 

3.2 The Design Model 
The Requirements Driven Design approach to design is to explicitly allocate required processing 
and data onto design elements. Three kinds of design elements are used: 

• Modules, which are decomposed into algorithms which accomplish the specified 
transformations 
• Tasks, i.e., logically concurrent units of code, whose executions are serialized by 
the operating system scheduler; and 
• Data objects, i.e., object which encapsulate state data 

Module Definition 
When the discrete functions of the required processing are decomposed down to the stimulus­
response level, the nodes of the graphs represent memoryless transforms (called ALPHAs in the 
terminology of SREM) with known data input and output. These transforms can be allocated to 
Modules. The Module required input and output data are allocated to variables in a programming 
language. Algorithms are developed in the usual top down fashion to accomplish these required 
transformations. In Figure 2, the module decomposition is displayed in a fashion similar to that of 
Figure 1. 

H7 



Requirements -
including concurrency 
and replication 

Design -
including 
Tasks and 
Data objects 

Design Threads 

T1 • A - 8 • 81 • 8 -A - D - D1 - T2 

T1 - A - 8 - 82 - 8 - A - D - D2 - T2 

T1 - A - B - A - C - T2 

F7 BUI D 

FIGURE 2 - OVERVIEW OF ROD APPROACH 

Task Definition 
This phase of design addresses the problem of mapping the required processing onto the tasks, 

i.e., the units of code scheduled by the operating system. If there is only a single task, then all of 
the concurrency exposed in the requirements would have to be serialized into a single program. 
This could certainly be done, but then the programmer would have to generate the code which polls 
the input lines periodically and call procedures to handle the inputs in a manner which ensured that 
the required processing load could be sustained. If tasking constructs are available at either the 
coding language level (e.g.tasks in C or Ada), the the run time system can provide the (reusable!) 
code to perform the serialization of the concurrency in a flexible fashion. Figure 2 illustrates that 
required processing has been mapped onto tasks, and that one of the tasks uses a module which is 
decomposed into a hierarchy of modules. 

H8 

0 

0 

0 



• 

0 

0 

0 

Data Obiect Definition 
Just as processing must be allocated to tasks, state information must be allocated to data objects. 
In this context, a data object is defined as a combination of data structures and methods used by 
other processing elements to create, access, manipulate, update, and destroy data contents in the 
data structure. Recall that Booch [3] describes the defining characteristic of an object as an entity 
which encapsulates state information. Since the requirements portion of the Requirements Driven 
Design approach defines all of the required sequencing of the system and thus all of the state 
information required to support that sequencing, then without loss of generality, any object 
oriented design can be described in terms of allocation of required state information onto data 
objects. Note that in Figure 2 the state information has been allocated onto a data object with two 
methods - one for insertion, and one for extraction. A buffer linking Tasks 1 and 2 is just a 
standard predefined data object. 

Fault Detection and Recovery 
After the required processing has been allocated to the design objects, a Failure Modes Effects 
Analysis is carried out to identify potential faults, and identify the impact of those faults on the 
overall operation of the software. If it is decided to deal with a fault, functions may be added to 
detect and recover from the fault. These functions may then be decomposed and allocated onto 
design elements in order to complete the design. Thus there is a systematic method for identifying 
and implementing the design decisions which address the non-functional requirements (e.g., 
safety, availability, reliability, resource constraints). 

The Mappin2 of Reguirements to Desi2n 
The above mappings of required processing and data onto design elements is made in a fashion 
which explicitly preserves both the required sequencing and the data flow of the requirements. 
This means that any path of processing in the requirements will map into some sequence of task 
and module invocations in the design, as depicted on the right hand side of Figure 2. Similarly, 
any sequence of time functions in the requirements will be decomposed and allocated onto a set of 
tasks, modules, and data objects which implement it. Thus the effort required by the Deutsch 
approach for finding the mapping from discrete functions in the requirements onto a design thread 
is eliminated because of the method of constructing the design using the Requirements Driven 
Design approach. · 

3.3 The Test Planning Approach 
Now we reap what has been planted during the requirements/design phases of development. 
Following the discussion in Section 2, one can simply read off of the diagrams all of the tests 
which are performed in the state of the practice: 

• Unit level tests are obvious -- they apply to each of the modules and tasks. 
• Module integration tests can be performed meaningfully at the top module level, at the 

level where a task incorporates its modules, and for all of the methods supporting a 
specific data object 

• Path and thread tests are equally obvious. For every path of the requirements there is a 
corresponding path of task and module invocations, as depicted on the right hand side 
of Figure 2. Thus the path (or, in simple cases, the thread) serves the same purpose 
as the basic unit of integration testing for this approach as the thread served as the 
basic unit of test planning for the Deutsch approach. 

• The function tests, in which a time function accepts a time sequence of inputs, can be 
associated with each time function. 

• The single object tests must test each of the state transitions (or paths of state 
transitions) identified in the graph of functions. This must occur for all of the state 
transitions for each object (e.g., see Figure 2). 

• The multiple object tests will force all of the state transitions in the coordination 
function. 

H9 



• The exception testing tests all of the branches of processing which were added to detect 
and recover from the exceptions identified during the latter stages of the design phase. 

The following strategy for test sequencing is suggested: 

1) Modules which perform the required transformations, and methods used to access each 
of the data objects can be tested either top down or bottoms up, according to the 
preferences of the testers. 

2) Modules and data objects can be tested concurrently with the top down testing of the 
tasks. These test should be performed first on the host, where a friendly, debugging 
environment exists, and then moved to the target machine where the testing is repeated. 

3) To test the tasks on the host, a special test tool called a Functional Operating System 
(FOS) will be required. The FOS is a program on the Host machine which provides all 
of the operating system services supplied by the target operating system. 

4) The final load tests will have to be performed on the Target architecture only, as the Host 
processor does not usually have the capacity to perlorm them. 

5) Increments are defined for development. Each increment will go through the same 
sequence of module and task development on the host, integration testing on first the 
host and then the target architecture. The definition of the increments must trade off 
two points of view: do first things first, so as to minimize the required scaffolding 
software; and early resolution of the critical issues (e.g., if track processing has been 
identified as risky, then it should be done early so there is ti.me to fix it if needed). 

It is noted that the methods described above can be used effectively as a requirements/design 
verification and validation method for software not developed using the Requirements Driven 
Design approach. This is a consequence of the fact that the methods describe invariants of the 

0 

system (i.e., behavior which must be satisfied regardless of design implementation, and allocation Q 
of required processing and data onto design elements). In fact, it is recommended that the 
Requirements Driven Design methods and tools be used in an Verification role previous to first use 
as the requirements/design methods for a critical software project in order for the personnel to gain 
confidence in the methods and tools. 

4.0 CONCLUSIONS 

It would not be totally unfair to characterize the approach presented above as merely: 
• adapting the approach documented by Deutsch to apply to an improved requirements/design 

model, and thus to eliminate its deficiencies; 
• extending the approach to address host/target testing problems; and 
• incorporating the "folklore" from the state of the practice. 

All of the deficiencies of the Deutsch method identified in Section 2.4 have been addressed except 
one -- the lack of tools. The methods described above are currently supported by tools. The 
DCDS tools developed by TRW under contract to the U.S. Army capture the requirements/design 
information, and perform substantial consistency/completeness analysis on this information. A 
Test Specification Language is used to document the information developed using the methods 
described above. A second set of tools to support this approach is currently in development at the 
Ascent Logic Corporation. Readers desiring more information about these tools should 
contact the author. 

The expected results of using the methods described above are substantial. First, the process of 
defining a test plan traceable to requirements and design is now constructive (i.e., paths of the 
system behavior graphs are mapped onto tests) and understandable, rather than the product of 
"black art". Second, use of the methods are expected to increase productivity (i.e., the current Q 
effort to extract thread and object test cases from the requirements will be eliminated). 

H 10 

., 



i 

0 

0 

0 

REFERENCES 

1. M. Alford, "SREM at the Age of Eight", IEEE Computer, April 1985 

2. M. Deutsch, Verification and Validation: a Practical Approach, J. Wiley and Sons, 
1979 

3. G. Booch, Software Engineering with Ada, The Bejamin/Cummings Publishing 
Company, Inc., 1983 

Hll 



0 

0 



0 

0 

0 

£ut0111ated Software Testing - CHe Studies lage 1 

E. Uren, E. Miller, J. Irwin 

Software ••earch, Inc. 
625 Third Street 

San Francisco, CA 94107-1997 

Abstract: Typical Software Research projects are 
described and numerical results from these pro­
jects are given. Levels of productivity are very 
high provided that a significant level of mechani­
zation can be obtained. SR's use of specialized. 
software tools is described in detail. 

Confidentiality Note: We have to keep the names 
of clients confidential - this is often a main 
condition of our work - and have disguised the 
project summaries extensively. However, in all 
cases the statistics and the effort levels are 
reported accurately, as is the general type of 
product. 

JllDODDCTIOII 

We have found four major patterns in the work we 
are called on to do for clients at the ''hi-tech" 
end of our business. The patterns repeat often 
enough that we think it will be interesting to 
current and potential clients to see what the 
numbers are, so that they can compare themselves 
with others • 

In addition to these patterns, there is substan­
tial common ground across these project types. 

The typical situation is that a vendor has a pro­
duct such as a compiler or operating system under 
development. The vendor is interested both in 
detecting errors in the current release or version 
of the product and in having a procedure for 
detecting errors. The procedure should be mechan­
ized and should be as simple as pos~ible so that 
when errors are repaired, the entire product may 
be retested economically, (this latter procedure 
is called regression). This will enable the user 
to verify that the errors have indeed been 
corrected and that no new errors have been intro­
duced duri~the repair process. 

To detect the errors, a test suite is constructed 
and since the customer is very eager to see the 
results of the testing the customer expects the 
test suite to be applied to the product under 
study during development of the suite itself. 
Typically, SR will agree to do this and also to 
accomodate their eagerness, SR usually sets up 
electronic mail so that they may get "instant 
access" to the latest "news " about tests applied 
~no erroro oece~ced, 

Development of the mechanized procedure for run­
ning the test suites was considered to be a pro­
cess which was unique to each project because 
environments and test objects appear, at first 
glance, to be so different. However, as experience 
with the projects increased, however, it became 
clear that a general purpose tool could (and 
should) be constructed. 

Project Classes 

~ ~ Development: In this category, our 
purpose is to build the customer a suite for a 
fixed product. In early discussions with the 
potential customer, a decision is usually made 
whether there should be full validation or whether 
a touch test suite will suffice. A touch test 
suite consists of a set of programs that collec­
tively exercise all language at least once. 
Smaller than a full validation suite, it is also 
far cheaper. It is a compromise between size and 
required complexity (that one might expect in a 
full validation), and thoroughness. 

Comprehensive Product Testing: In this category, 
the purpose is to build and apply a complicated 
mechanized set of tests. The thrust of these pro­
jects is to develop a set of tests which provide 
as complete functional coverage as possible of the 
product under test. Since the product tends to be 
complex, the advantages of mechanizing the process 
of applying the tests become more significant. 
Consequently, there is considerable effort devoted 
to constructing the mechanical methods of applica­
tion. The mechanization process goes hand-in-hand 
with organizing the tests themselves. This organ­
ization in and of itself proves to be a very 
powerful tool for analysis of the weak and strong 
components of the product. Generally, the group­
ing of individual test cases in the suite is 
oriented towards major functions of the product, 
and an accumulation of failed test cases in a 
group will provide a clue to product developers as 
to how to repair the errors so detected. 

Detailed Technical Testing: In this category, we 
classify compiler or operating system testing. 
Compilers and operating systems are the foundation 
upon which which most development work is con­
structed. Typically, they are widely distributed 
with the computer hardware, and probably to most 
programmers, are seen as part of a complete pack-
age which happen! to comprise both hardwar@ and 



Automated Software Te•ting - Ca•e Studies 

software. The acceptance of the hardware by the 
user is indeed "masked" by the "appearance" and 
performance of the software. Consequently, the 
vendor considers it crucial to be as fully 
informed as possible about what these systems can 
and can not do. 

Validation Testing: In this category, we have 
another type of critical product. Some software 
products have a particularly important dimension 
of criticality since they control medical devices 
which themselves have important impact on the 
management of health care. They can be of dif­
ferent orders of complexity. At various levels, 
they provide data used to analyze an individual's 
state of health and treatment can be prescribed on 
the basis of results of these systems. Not only 
do these systems affect human life and the quality 
of human life, they are also subject to regulation 
by the Feder a 1 Government and they operate in a 
domain wherein liability assumes a greater and 
greater importance. 

Enviroaaeat Te•t Suite 

Under contract to a foreign company, which was in 
turn under contract to a (foreign) government 
agency, SR developed a comprehensive validation 
suite for substantial extensions to the Unix Sys­
tem V validation suite. This test suite was the 
first to address validation of an environment, and 
was targeted to an environment designed for port­
able common tools. 

SR developed the following during about 4 effort­
months: 

- 157 self-checking test programs. 
- 471 tests of 175 commands, calls, drivers and 

functions. 
- Special control program. 

The special control program, in addition to exe­
cuting the tests, reports incrementally on the 
progress of a group of tests in terms of the 
pass/fail ratio. 

SR provided onsite installation support. 

The initial application uncovered 24 errors. 

PL/I Touch Teat Suite Dewelopaent 

SR developed a touch test suite for the LPI/PL-1 
subset G compiler for a major US vendor. This 
suite tests 204 features of the language. The 
touch test suite consists of 11,167 lines of PL/I 
code in 165 programs (and two auxiliary files for 
one of the programs), 26 scripts, two automated 
test scripts and 164 baseline files which have 
been validated manually. 

Included in the suite (but not necessary for 

Page 2 

"functional coverage") were 8 programs from a 
widely available PL/I G-subset textbook. 

An important feature of the suite was that it was 
set under SMARTS control (Software Maintenance and 
Regression System -see Reference 2), so that 
regression could be just about as automatic as one 
wished using the two automated test scripts. This 
is the generalized regression control system 
referred to previously. The package also included 
scripts to simplify compiling, loading and execut­
ing the test cases should one not wish to use 
SMARTS. 

The programs in the test suite were not self­
checking. Instead, SR used another approach. 
First, all the test output results were accumu­
lated in ''baseline" files. Then SR validated the 
contents of the files to ensure that the contents 
were correct for the test object in its current 
state of development. Thus while most of the out­
put was correct because the test object had no 
errors, in some (perhaps many) instances, the test 
results were.the results of errors. This output 
was still incorporated into the baseline files. 
Output from subsequent executions of the test 
suite during regression could then be compared 
with the baseline files quite simply using "diff". 
Clearly, any differences reflected changes ·in 
behavior of the test object, which is exactly what 
the tester was looking for in a regression situa­
tion. The goal of the regression test is that 
correct output remain unchanged and incorrect out­
put be changed, presumably for the better. Under 
SMARTS, this is always the approach taken. 

During development of the •uite, SR discovered 
thirty-one problems serious enough to warrant 
reporting in formal error report•. The cost of 
dis~overy of each error was $500 alone, IGNORING 
the fact that a test suite, a set of baseline 
cases and a regression system were delivered. 

h•embler Teat Suite and Control Progr-

In this project for a major US vendor, the purpose 
was to develop both a comprehensive test suite for 
a new macro assembler and an automated way to 
apply it, and also to apply the suite to the 
assembler using the automated procedure. The 
automated procedure was to allow the user to 
''browse" through the test set, run individual 
tests or groups of tests, compare results of runs 
with previous results, and maintain statistics. 

610 test programs were developed and applied, 
detecting 160 defects. After the client made some 
revisions to the macro assembler, the tests were 
re-applied. 

The automated procedure developed in this project 
can be used in other regression situations on 
other projects. Thus the client has, as a by­
product, a new universal tool for regression. 
Should the client develop another product which 
requires regression, it is only necessary to· 

0 

0 

0 



0 

0 

0 

Autoaated Software Teatiag - Ca•e Studie• 

define the atrueture of the test• in a control 
file, construct the tests and validate the output 
of the first application in what are called base­
line files. 

From SR'• point of view, development of the 
automated procedure led SR to completely general­
ize the process of automated control and produce 
the SMARTS package. SR had developed so many con­
trol programs from scratch that the need was evi­
dent. The general purpo•e qualities of this pro­
gram were the final step. 

To develop the tests and the regression system 
took one effort-year. The regression system con­
tains 5,400 lines of control file. 

System Test Mechanization Project 

A major portion of this project was to develop an 
automated regression system for a client with a 
quite large , extremely sophist i eated, highly 
user-interactive, product. The product runs on 
Sun workstations and was designed using object­
oriented principles. Interaction with the system 
used a keyboard as one might expect, but far more 
emphasis and use was focussed on the use of a 
mouse. The client had invested substantially 
(more than 8 figures) in developing the system. 
There have been many releases and a few versions 
have been in beta-teat for about a year. 

Working with the client's programming staff, SR 
developed a system, integrated into the client's 
program, which captured key~strokes and mouse 
movements. Tests may be captured during their 
first application and played back. This together 
with the regression system allows the client to 
automate most of the testing procedure. 

Thus the client has an accurate detailed record of 
what functions the test performed, and there is 
also a procedure for modifying these test playback 
files so that test variants may be constructed 
economically. Performed under control of the 
regression system, SMARTS, comparisons with the 
results of prior tests may be made and statistics 
maintained. 

SR developed 210 tests in the process. There were 
about 650 sub-tests included. In the process of 
constructing and applying the tests, SR discovered 
22 errors. 

Unix Syatea Testing 

The purpose of this project was to apply previ­
ously constructed touch tests for Unix utilities, 
to extend touch tests for the system interface, 
construct library function tests and to develop 
and apply tests to assess the computer's kernel-
hV~l IUbility. 

The client was a major U.S. computer manufacturer 
whose new computer model was at about the final 

Page 3 

stages of hardware testing. 

To assess the computer's kernel-level stability, 
SR developed a suite of self-cheeking tests of 
CPU, memory, disk I/0, serial communications and a 
CapBak(tm) session simulating a "typical" terminal 
user. The tests in the stability teat suite were 
parameterized as to size and could be executed in 
different mixes. Thus instability in terms of 
test failure or degraded response time was 
observed in terms of the size and mix of the load 
on the machine. 

There were 141 tests of utility functions testing 
665 switches and combinations of 195 Unix base 
commands, 66 tests of the system interface (with 
182 sub-tests) and 87 tests of library functions 
(with 150 sub-tests). Fifty-one anomalies were 
detected of which thirty-one proved to be errors 
in the software. 

The stability tests consisted of load tests for 
the CPU, Disk, communication channel, keyboard and 
memory. These parameterized tests could be run 
independently or as a mixture. Test run times 
ranged from 8 seconds through 37 hours. Five 
anomalies were detected in this portion. 

The control program for the stability tests con­
tained enough general characteristics to be con­
sidered the "seed" for SMAR7S. 

Xenix Toacb Testing 

Xenix V Software Syst- Test Project 

The purpose of this project, for a large U.S. 
computer manufacturer, was to validate the opera­
tion of Xenix Von a variety of the manufacturer's 
machines. The test suite developed was to be 
applied to a number and variety of machines in 
single-user mode, linked together, and to dif­
ferent versions of the operating system. 

SR developed touch tests for all XENIX utilities 
including base commands, software development sys­
tem commands, and text processing commands. SR 
also planned and developed full validation tests 
for the following software device drivers: 

Memory Managment Unit 
80287 Co-processor 
CPU 
Serial Port (including Multiport) 
Parallel Port, 
Console 
Clock 
Timer 

The statistics for these tests were too voluminous 
the1J1Selves for this document. Suffice to say there 
were considerably more than 1000 tests. Another 
point to note is that this project was the last 
that SK had do without th@ benefit of @ith@r 1 
control program or a regression system. The lack 
of mechanization meant that running the tests and 
documenting them accurately consumed substantial 



Automated Software Testing - Case Studies 

manual resources. 

SR detected 94 errors in the first application of 
the tests and 50 in the first of three regres­
sions. 

V.&LIDATIOR 'IZSrlIG 

Patient Der:a Hanageaent Sysr:ea QC 

The purpose of this project was to test a system 
which permitted medical patients to accumulate 
periodic readings of certain biological variables 
without visiting a medical facility. The patient 
used a portable recording device for this. At 
fairly regular intervals, the patients' records 
could be offloaded to a personal computer software 
system for analysis and storage. The client was a 
major US supplier of medical equipment. SR 
developed a system for maintaining the system 
under strict configuration control; and developed 
a system for testing new releases thoroughly and 
economically before distribution to the client's 
customers. Thus a new release must proceed both 
under careful configuration control and under 
examination under the same teat situations as pre­
vious versions. 

To accomplish this, SR developed a set of teats 
under automatic keystroke capture and playback 
conditions (using SR's CapBak(tm) system - Refer­
ence 1), developed a further set of functional 
tests, established a Software Incident Reporting 
System for tracking errors, placed master copies 
of the code under Unix SCCS control and systema­
tized procedures for making changes to the code 
smoothly, SR performed detailed coverage analysis 
on each version of the code using the automated 
test suite to ensure that the test suite tested 
the code thoroughly. A variety of errors and 
anomalies were discovered and repaired as part of 
the project effort. 

Quality Contro 1 Printer Testing 

This client was under contract to a major U.S. 
medical equipment supplier to produce hardware and 
software which would permit the use of a printer 
as a Quality Control device by producing reports 
derived from data accumulated in some medical 
equipment. This medical equipment ·is, ultimately, 
the equipment whose operation needs to be checked 
periodically. When not performing this function, 
the printer would serve as a printer. 

SR's task was to test the software which checked 
the operation of the medical equipment. SR teated 
it in a number of ways. 

First, SR performed a formal inspection and review 
of the code, finding 71 anomalies at the modular 
level and 65 at the system level. Second, it 
developed a set of 38 functional tests which were 
applied to instrumented versions of the code com­
piled on a PC and determined that the coverage 
levels reached very high levels for both branch 
coverage and system coverage. SR used TCAT./C and 

Page 4 

STCAT/C (References 3 and 4), another set of stan­
dard tools for this step of coverage analysis. 

Third SR produced another 27 tests and modified 
the original 38 to have increaaed numbers of read­
ings. This process required that SR also develop 
a method for generating test cases. 

Fourth, SR developed a validation system for test 
cases. This system consisted of three parts. One 
part used the same input as the code under test 
and computed results and the coordinates of where 
the results should be plotted on graphs which 
could be part of the output. Another part 
extracted the results of the test code's output 
and presented this data in the same format as the 
first program's output. A third program could 
compare the output of the first two parts. That 
this process worked correctly was formally vali­
dated on the output of a sample. 

Next, SR placed the test suite under SMARTS con­
trol for regression purposes. Regression could 
not be as automatic as one would like due to fact 
that the code under test, requires that switches 
be set and a button pushed before the code exe­
cutes using the data. Nevertheless, the baseline 
cases were validated. 

Finally, SR applied the test cases to two releases 
of the software. 

Another twenty-two error reports were written; 14 
of these were judged serious. 

By the end of the project, the defect rate on the 
latest version was 11 or about 4/'ll.OC. Of these 
11, about 5 were still serious or 2/KLOC. Thus, 
the complete error detection process reduced the 
error detection rate by a decimal order of magni­
tude. 

REFERENCES 

1) D. Casey, L. Ceguerra, C. Cox, J. Irwin and M. 
Morrison, "User's Manual for Capbak, Keystroke 
Capture and Playback System", Release 2. 0. 9, 
Technical Note TN-1075, Software Research, Inc, 
San Francisco, Ca,, May 1987. 

2) D. Casey, C, Cox, J. Irwin and E. Qualls, 
"User's Manua 1 for SMARTS, Software Maintenance 
and Regression Test System", Release 4.1, Teechni­
cal Note TN-1281, Software Research, Inc., San 
Francisco Ca 94107, May 1987, 

3) R.W. Erickson, H. Nguyen, E. Miller, J. Irwin, 
D. Casey and L. Ling, "User's. Manual for TCAT/C 
(PC Version)", Technical Note RM-1100/2, Software 
Research Associates, San Francisco, Ca., September 
1984, 

4) H. Nguyen, "User's Manual for S-TCAT/C PC/DOS 
Version", Release 4.7, Technical Note RM-1266/1, 
Software Research Associates, San Francisco, Ca., 
August 1986, 

0 

0 

0 



0 

0 

0 

EXPERT SYSTEM VALIDATION : ISSUES AND 
APPROACHES 

Edward F. Miller 
Software Research, Inc 

625 Third Street 
San Francisco, California 94107-1997 

USA 
Tel. : (1) 415 957 1441 

Abstract : As expert system (ESs) technology matures, and as more and more 
ES software appears on the market, the time to ask hard questions comes nearer 
and nearer : What about the quality of an ES ? How does one know that the result 
produced by an ES is correct ? What indications are there that an ES might be 
giving incorrect information ? What can make an ES fail ? What can be done to 
certify ES software ? 



0 

0 

0 

PARALLELS WITH THE PAST 

There can be little doubt that ES's represent a tremendous advance in software 
technology. The ES approach, combined with the unique set of applications of 
ES's - which have very great technical appeal - virtually assures that the 1990's will 
be an ES decade. There are, however, close parallels between the current 
situation in ES technology and the early 1970's love-affair with software 
engineering (SE). Many of the rosy promises that were being made by SE 
technologists of that era concerning formal validation procedures (to take one 
example) have a resonant similarity with some of the promises - and expectations­
of ES technologists of today (Ref 1,2). 

Great difficulty can ensue if the ES community too quickly concludes that ability 
to build a system that appears to have quality behavior on a few cases means that it 
will have quality behavior in all instances. 

FAILURE MODE ANALYSIS 

Here is a preliminary analysis of the possible failure modes in an ES. Software 
Research's (SR's) approach to ES validation (ESV) is described (Ref. 4). 

o Incorrect user Input ("PIiot Error") : The user thinks he said X and he 
really said Y : he believes the opposite but he is wrong. The ES-produced answer 
is wrong not because of a fault in it but because of a fault or inconsistency on the 
part of the user. 

Full validation of the user's input state is the solution, but the overhead for this 
computation - let alone what is involved in it - is not well understood. 

SR's ESV method : little possible protection, except for careful user testing 
for resistance to error inputs. SR's early experiments indicate that the use of 
mechanically generated test suites, combined with an automated session driver 
(i.e. the equivalent of a software test bed), is effective. 

o Incorrect rule In the ruleset : In this case the ·expert~ has declared an 
incorrect fact - probably an intermediate one - and doesn't know it. The ES works 
correctly but gives the wrong (but 100% self-consistent) answer. The problem is, 
the rule is invalid with respect to ·outside real-world truth". 

SR's ESV method : development of suites of automated test sessions 
generate, as much as possible, one each of every possible equivalence class of 
output result. Our early experience suggests that, with care in choosing limit and 
unusual cases, the most common access to an (the original ?) expert is essential to 
create the ES test baseline. 

o Incorrectly stated rule In ruleset : Here there are three cases : missing 
rule, extra rule, and wrong rule. Coverage analysis (percent of rules touched) can 
detect most of the wrong rule cases. If the input state sequences are sophisticated 
enough, they can also detect 50%-70% of the missing rule cases. Extra rules are 
noted by their non-use after coverage checking. 

Preliminary estimates suggest life-cycle defect rates in the range 20/kAules to 
30/KRules. 

SR's ESV method : Measurement of the LAI (Logical Rule) for popular ES 
languages such as Lisp or Prolog appears to be straightforward, although some 
coercion of certain interactive features is sometimes problematical. Some rufeset 
bugs are very difficult to find and careful inspection methods must be used. 



0 

0 

0 

o Rule reduction problem : The error is in the ES shell or other system 
software component. Conventional rules of SE production apply : 50 
defects/KLOC, detectable inspection, functional test, and structural (unit and 
system level) test. 

SR's ESV method : Use conventional convergence testing methods based 
on comprehensive functional and structural exercise, but only if the source 
versions of the ES system component is available. In the future, SR advocates 
using standardized test suites for the popular logic programming languages. 

o Validation of outputs : The issue is similar to that in proving complex 
programs - ones with many and complex paths, not necessarily those with many 
levels necessary to check that combinations are tried. But combinatorics prevents 
this unless ways to factor rulesets along structural lines can be found. 

SR's ESV method : SR estimates that about a 100:1 reduction in overall 
path-oriented complexity is possible by linearizing methods. How to accomplish full 
validation for a complex, real-world system is not fully understood. Preliminary 
application of SR's MetaTest system suggests there is some hope of unraveling 
the logic flows and factoring them efficiently. 

COMMERCIAL ES VALIDATION SERVICE {ESVS) 

Many modem approaches to conventional software testing are nearly directly 
applicable to ES quality certification. The parallel:.; have permitted release of SR's 
new Expert System Validation/Testing Service, based in part on use of 
advanced software validation methods. 

SR's CapBak(tm) session capture and playback software, combined with the 
SMART regression test system, allow each ES test case to be run, with test results 
comparaison, nearly 1 00% automatically. Regression testing is fully automatic. 

The completeness of the tests can be assessed with SR's new TCAT/Llsp 
and TCAT/Prolog test completeness assessor systems. (SR's new ES test tools 
will be available in late 1987). 

The costs of SE validation services (SEYS) are $15K-$30k/KLOC. Because of 
the increased complexity and subtleness of the defects, ESYS costs are presently 
over $1 00K/Krules. After SR gains further experience. we estimate the costs to be 
in the $65K-$85K/KRule. 

SUMMARY 

From the QC perspective and from the experience of applying effective QC 
methods to a wide range of sottware, ESs are, ultimately, built out of software - the 
same kind of software with which we are all generally familiar. While ESVS costs are 
significantly higher than for SEYS, they clearly indicate ESYS' viability. 



0 

O· 

REFERENCES 

1. D.G. Bobrow, S. Mittal & M.J. Stefik : "Expert Systems : Perils and Promises·, 
Communications of the ACM, September 1986 

2. D. Barstow : "Artificial Intelligence and Soitware Engineering·, Proc. ICSE 9, 
Monterey, California, 1987. 

3. R.L. Enfield: "The Limits of Software Reliability", MIT Technology Review, April 
1987. 

4. E.F. Miller & W. Howden : Software Testing and Validation Techniques, 2nd 
Edition, IEEE Computer Society Press. 1984. 


	QW88-PROC01
	QW88-PROC02
	QW88-PROC03
	QW88-PROC04
	QW88-PROC05
	QW88-PROC06

