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The Problem 

"The cost of reworking errors in programs becomes 
higher the later they are reworked in the process, so 
every attempt should be made to find and fix errors 
as early in the process as possible." 

--Michael Fagan, 1976 
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...UPL Relative Cost to find and IF ix Defects 
When They Are Caught at Different 

Development Stages 
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Typical Example of Defect Injection 
and Removal 

~Assume 60 Defects Escape pre-Test phases for Every K 
Lines Written 

o Assume Test Steps Are Each 50% Efficient 
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JPL The Software Quality With Test Only 

Subsystem 
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Design 

Software 
Requirements 

SYMBOLS 

Software 
Architectural 

Design 

L. One Defect Detection Step 
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The Same Example With 
Formal Inspections 

• Insert inspections into the pre-test phases 

0 

i} The strategy is to find and fix defects when and 
where they are injected 

0 Now have 9 detection steps instead. of 4 
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Subsystem 
Functlonal 

Design 

Software 
Requirement• 

SYMBOLS 

0 
The Software Development Cycle 

With Inspections 
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6 = One Defect Detection Step 
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Must make two assumptions: 

1) How escaping defects are spread 
across phases 

(use 5, 5, 10, 20, 20) 

2) Inspection efficiency 
(use 50% - conservative) 

0 
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Subsystem 
Functional 

Design 
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Software 
2.5 Requirements 
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Software Development 
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Test Related Inspections 

Test lnspect~ons (IT1 and IT2) help produce high 
quality test cases 

Result is to increase efficiency of test phases 
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Subsystem 
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Requirements 
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The Software Development Cycle 
With Added Test Inspections 

.,__ _____ -H; 
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Detalled 
Design 
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Improved Efficiency 

During Test Phase 

(greater than 50%) 

One Defect Detection Step 

SOFTW/\RE PRODUCT ASSURANCE 

Note: A greater savings is due to 
reduction in Defect Amplification 
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DIFFERENCES 

1 . Occur 

2. Configuration 
management 

3. Size of review 
material 

4. Attendees 

5. Purpose 

FORMAL INSPECTIONS 

Inside P.hases 

Internal 

Small 

Small group 
(invitation only, 
assigned roles, 
no managers) 

Find and fix 
defects early 

*For more information see 
"Guidelines for Planning and 
Conducting Formal Reviews." 

Source: JP-L D-363, Rev. D, March 1987 

SOFTWARE PRODUCT ASSURANCE 

MILESTONE REVIEW* 

Between phase 

Baselined 

Large 

Large group (open) 

Product conformance with 
requirements & stds. 
Place products under 
configuration mngmt. 
Validate conformance 
with schedule and 
resource constraints. 
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.Jl~L Formal Inspections Are "In-Process" IReviews 

Work 
Products 

Sourc:e: J. Kelly, 1987 

SOFTVJAREPRODUCTASSURANCE 

Phase 

Formal 
Inspections 

Inspection 
Certified 

Work Products 
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What are Formal ~nspections? 

(contents) 

0 Objective 

°ம� Formal Inspections vs. Walkthroughs 

• Description of Formal Inspections 

- Phases 
- Participant Roles 
- Types of Inspections 
- Basic Rules 
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Primary Objective 
of Formal Inspections 

Remove Defects As Early As Possible 

in the Development Process 

Formal inspections achieve this objective by:. 

• Identifying potential defects during individual preparation 

@ Verifying that identified items are actual defects 

<JJ Recording the existence of defects 

<i Providing the author with a list of defects to fix 

• .Ensuring that fixes are performed and correct 

0 
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.JJPlL Differences between Formal Inspections 
and Walk-throughs 

Properties Inspection Walk-through 

1 . Formal moderator training Yes No 
2. Definite participant roles Yes No 
3. Who "drives" the inspection Moderator Author 
4. Use "How to find errors" Yes No 

checklists 
5. Use distribution of defects Yes No 
6. Follow-up to reduce bad fixes Yes No 
7. Less future errors because of Yes Incidental 

detailed error feedback to 
individual programmer 

8. Improve inspection efficiency Yes No 
from analysis of results 

Source: Fagan 1976 
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PLANNING 

~~~ 

~ 

• 
lnapectlon 
Announce­
ment 

Source: J Kelly, 1987 
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Formal Inspection Process 

OVERVIEW 
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Individually 

' Individual 
Preparation 
Loge 

! 
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Report 
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INSPECTION 

~ 
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~ 
I 

THIRD HOUR 

~ 
~ 
~ 
~ 

(optional) 

1 
lnapecllon 
Delaet 
Llet 

REWORK 

~ 

H",> 

-
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~ 
~ 

0 

-+ ~ ~ 

• 
lnapectlon 
Summary 
Raport 

SYWBa..S 

= PROCESS STAGE 

= PERSON 

= STAGE TRANSITION 
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..JPlL Primary Objectives by Stages 

Process Stage 

1 . Planning 

2. Overview 

3. Preparation 

4. Inspection 

5. Third hour 

6. Rework 

7. Follow-up 

Source: Fagan 1976, Gilb 1987 

SOFTWARE PRODUCT ASSURANCE 

Objective 

Coordinate Inspection 

Education 

Find errors/Education 

Find errors 

Discuss solutions and 
resolve discrepancies 

Fix Problems 

Ensure all fixes are 
correctly made 

Parti ci pa nt(s) 

Moderator 

Group 

Individual (all) 

Group 

Group 

Author 

Moderator & 
Author 
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Roles in formal inspections 

Q Moderator 

G> Author 

Q Reader 

o Recorder 

o Other Inspectors 

0 
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Types Formal Inspections 

RO Functional Design Inspection 

R1 Software Requirements Inspection 

0 10 Architectural Design Inspection 

I 1 Detailed Design Inspection 

12 Source Code Inspection 

IT1 Test Plan Inspection 

e IT2 Test Procedures & Functions Inspection 

SOFlWAREPRODUCTASSURANCE 
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Basic Rules for 
Formal Inspections 

Inspections are carried out at a number of points 
inside designated phases of the software life cycle. 

Only technical documents and code are inspected. 

o Inspections are carried out by peers representing 
the areas of the life cycle affected by the material being 
inspected (usually limited to 6 or less people). 

Management is not present during inspections. 
Inspections are not to be used as a tool to evaluate 
workers. 

SOFlWARE PRODUCT ASSURANCE JCK:23 
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Basic IAules 
( continued) 

o Inspections are carried out in a prescribed series 
of steps. 

G> Inspection meetings are limited to two hours. 

~ Inspections are led by a trained moderator. 

G Inspectors are assigned specific roles. 

SOFTWARE PRODUCT ASSURANCE 
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Basic Rules 
(continued) 

i) Checklists of questions are used to define the task 
and to stimulate defect finding. 

" Material is inspected at a particular rate which has 
been found to give maximum error finding ability. 

'- Statistics on number and types of defects are kept. 

SOF1WARE PRODUCT ASSURANCE JCK:25 
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JPL. Product Error Rates* 
Shuttle's Primary Avionics Software Systems (PASS) 

_ (After Introduction of Formal Inspection) 

30 

2.5 

2.0 

~ :..; 
~ ,_. 
C> 
0::: 
15 

1.0 

* Number of Valid Discrepancy Reports Post Delivery per KSLOC 
Source: K°'lkhorst, 1986 
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More Results from Projects 
Formal ~nspections 

Project 

AETNA Life and Casualty 
4,439 LOC 

IBM Respond, U.K. 
6,271 LOC 

Standard Bank of S. Africa 
143,000 LOC 

American Express 
13,000 LOC 

Source: Fagan 1986 

SOFlWARE PRODUCT ASSURANCE 

Defects/Productivity 

0 Defects in use 
25% reduction 
development resource 

O Defects in use 
9% reduction cost 
compared walk throughs 

0.15 Defects/KLOC in use 
95% reduction in corrective 
maintenance cost 

0.3 Defects/KLOC in use 

0 
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Requirement of Formal Inspection 

or Similar Techiniques. by the 

JPL Software Management Standard 

"Peer review or technical walk-throughs shall be held on a 
regularly scheduled basis throughout the project/task" 

--3.11.4, p. 3-26, JPL-D4000 

Source: JPL D-4000 
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JPL Walk-throughs vs. Formal inspections 
Comparison of two similar projects at iBM 

Improved programming 
technologies 

Reviews 

Number of statements 

Total detail design, code and 
test personnel 

Dura11ion 

Syste-m Test Errors 
Pilot installation 

Total defects 

Coding rate 
2 

(LOC/Person 
months) 

Test error rate (Errors/KLOC) 

Source: IBM Tech Report 1978 

SOFlWAREPRODUCTASSURANCE 

PROJECT X 

Yes 

Walk-throughs 

10,000 

64 person months 

14 months 

PRS 

Yes 

1 
Inspections 

6,250 

41 person months 

7 months 

11 51'" 
26 O (also O errors in first 

6 months of operation) 

77 

155 

7.7 

11 

153 

1. 76 

1. Design, source code and test plan Inspections only. 
2. Includes time spent In design, code and test 

(Including moderator's time for PAS). JCK:29 
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Benefits of f'ormal ~nspections 
for 

Software Development 

• Improved quality 

~ Contributes to project tracking 

fi Improved communication between developers 

Q Aids in the project education of personnel 

o Cost savings through early fault detection and 
correction 
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Francisco. She is also President of the Bay Area Quality Assurance Association, a 
member of the Board of Directors for ASTE, and a member of the Project 
Management Institute. 
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TEST PROFESSIONALS 

0 Test Manager 

0 EDP Auditor 

0 Senior Test Engineer 

0 Test Engineer 

0 Test Technician 

0 System Assurance Engineer 
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RlECOGNJ[TION 

0 Experience 

°ப� Certificate of Performance 

0 

0 
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or 

network 

universities 

0 
organizations 

? 
E) 
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GOVERNING BODY 

GOVERNING 
BODY 

0 Define skill 
assessment 

0 Identify standards 
& procedures for 
testing. 

0 Update materials periodically 
with the progress and changes 
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TE§TING 
0 The process of executing a program with 

the intent of finding errors. 

0 An activity which certifies that after 
fallowing a set process, a product functions 
as specified in: 

- User Documentation 
- Final Product Requirements 
- Product Specifications 

0 A method of identifying defects in software 

0 To make sure that the product does not abend 

etc. 
etc. 

copyright Alka Shah 
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TESTING: 

WHAT ARE THE GOALS? 

0 Requirements (specifications) 

0 Zero Defect 

0 Acceptable Quality Level 

0 User Acceptance Criteria 

°௉� Cost of Quality 

(source: R. Robinson) 
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REQUIREMENTS I SPECIFICATIONS: 

0 What is the requirement? 

0 Is it adequately specific? 

°ణ� Can it be quantified in some manner? 

°ణ� Can the product be tested so as to 
demonstrate the specification, or is it 
an illusion? 

0 What are the success criteria for each 
requirement? 

copyright All<a Shah 



0 

0 

0 

ZERO DEFECT: 

0 Is this a real possibility or a dream? 

0 What is a defect? 

0 At what point is the measurement taken? 

0 Does zero defect make business sense? 

copyright Alka Shah 
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ACCEPT ABLE QUALITY LEVEL 

0 Does the product fit within reasonable 
tolerances? 

0 How was "Reasonable" defined? 

0 What is the cost of failure and debugging? 

copyright Alka Shah 
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USER ACCEPTANCE CRITERIA 

0 Who ultimately pays the bills / buys 
the product? 

0 What have they been promised? 

0 What are their real expectations? 
Reasonable? 

0 What are their business risks? 

0 What are their comfort zone with 
system failure? 

0 What will it take to get repeat business? 

copyright Alka Shah 
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COST OF QUALITY 

0 Quality is free, but is perfection worth the 
price? 

0 If the cost of quality is high, zero defect 
is cheap 

0 There is a place for quick and dirty, but 
is this it? 

0 How often does the end user get a real 
say in how much testing? 

copyright Alka Shah 
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TESTING: 
KNOWLEDGE & TOOLS 

0 Test Plan 
0 Test Scripts 
0 Test Tools 
0 Incident Reports 
0 Regression Testing 

0 0 Risk Assessment 
0 Implementation Test Specifications 
0 Installation Verifications 
0 Production Release Report 
0 Performance Analysis 
0 Performance Evaluation Report 

0 
copyright Alka Shah 



0 
CONTENTS OF A TEST PLAN 

1. Introduction / Overview 
2. PrajectFunction~ity 
3. Objectives of Test 
4. Completion Criteria 
5. Schedules 
6. Resources 
7. Responsibility by Phase 

0 
8. Tools 
9. Integration 
10. Tracking Procedures, CM & 

Problem Reports 
11. Pass / Fail Criteria 
12. Risk / Contingencies 
13. Training 
14. Test Cases 

0 
copyright .Alka Shah 
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QUICK & DIRTY TEST PLANS 

0 Limited time to write a test plan prior to 
starting the test. 

0 Goal is to provide a testing framework to 
conduct current tests. 

0 Approach 
1. Review document set 
2. Write boilerplate section of the plan 

(General sections required by company) 
3. Outline tests that must be done 
4. Write test cases for initial test set 
5. Make initial schedule estimates 
6. Expand minimum test set using project 

documentation 
7. Write additional test cases 

(source: Guy Jenkins) 
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IS§TIJE§ 

0 Testing Importance 

0 How to Control Testing Cost 

0 Reduce Maintenance Cost 
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WHAT ARE SOME OF THE 
CHARACTERISTICS 

A USER LOOKS FOR IN 
SOFTWARE 

0 Usability (friendliness) 

0 Reliability 

0 Maintainability 

0 Integrity 

°ྖ� Flexibility 
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CHARACTERISTICS 

0 Usability 

0 Reliability 

0 Maintainability 

0 Integrity 

°ே� Flexibility 

Operability 
Training 

Error Tolerance 
Consistency 
Accuracy 
Simplicity 

Consistency 

Access Control 
Access Audit 

Modularity 
Generality 
Expendability 
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CONCEPTS OF TESTING 

0 Top down testing 

0 Bottom up testing 

0 Integration testing 

0 Big bang testing 

0 White box testing (unit testing) 

0 Black box testing 
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ClER 1r]JFI CA 1rJI ON 
JREQ 1UJIREMEN1r 

0 Experience 

0 References 

°୲� Course I Examination 

copyright Alka Shah 



0 

0 

0 

RlE-CER'fIFJICA 'fION 

0 

0 

Is it necessary? 

Benefits: 

Candidates gains latest knowledge 
Organization benefits by continuing 
membership 
Greater recognition in the D P 
environment 

copyright Alka Shah 
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multi-disciplinary interests are evident in his educational background: a B.A. in 
mathematics from Oberlin College and an M.S. in biology from Ball State University. 
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PATH TESTING MAY 12, 1988 

AUTOMATED SOFTWARE TESTING: 
ADVANCED TECHNOLOGIES 

W.G. Bently 

OVERVIEW 

This paper addresses a specific automated software 
testing technology; path testing. Several proposed 
strategies will be reviewed and a new method, Ct with 
K=l coverage, will be presented. This concept was 
developed by Edward Miller at Software Research, Inc. 
and is being employed experimentally in analyzing a 
27,000 line C program developed at Miles, Inc. The 
viewpoint expressed in this paper will be that of a 
practitioner. 

THE NEED FOR A THEORY OF PROGRAM BEHAVIOR 

A thorough test of a program would elicit its behavior 
over the entire input. space. In practice, we are 
constrained to small samples of the input space. The 
ideal solution to this problem would be to develop a 
method for the selection of a sample that would be 
necessary and sufficient for proving the program has no 
errors; i.e. equivalent to an exhau_sti ve test. The 
methods discussed in this paper are not sufficient 
(Goodenough 1975), but they can be seen to be 
intuitively necessary, and hopefully will help move the 
technology closer to the ultimate goal of sufficiency. 

Succession of metrics 
FIGURE 1 

In order to know how much program behavior has been 
observed, it will be necessary to develop a theory of 
program behavior. An analogy with algorithm design will 
i 11 ustrate the need for such a theory. Humans design 
algorithms on the basis of a few cases, and often use 
partial execution to refine the algorithm (Kant 1985). 

page 1 
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Algorithm development 
FIGURE 2 

MAY 12, 1988 

After the algorithm is implemented as code, the testing 
staff may add a few more cases. But how many test cases 
are necessary? How many are sufficient? 

Algorithm testing 
FIGURE 3 

THE NEED FOR A SCIENCE OF SOFTWARE TESTING 

Science is based on measurement. We need instruments 
that quantify the software behavior observed; automated 
instruments that can be uniformly applied during the 
testing process. The intuition and experience of the 
practitioner are fallable, and become less useful as 
programs become larger and more complex. On the other 
hand, intuition and experience can serve as a valuable 
guide in the development of automated tools that great~y 
extend our capabilities of observing and measuring 
program behavior. 

One such instrument is TCAT, a product of Software 
Research, Inc., which yields a branch coverage metric. 
The Cl coverage metric is based on the notion that it is 
necessary, during testing, to exercise each decision 
branch within the program at least once. TCAT has 
proven to be a practical and productive tool during the 
testing of all Miles' data management software products. 
The primary purpose of branch coverage has been the 
identification of missing test cases. The coverage 
concept has also proven to be valuable as a guide during 
the walkthroughs that preceed writing of test harnesses. 

Cl is necessary, but not sufficient. A simple program 
consisting of two decisions may be used to illustrate 
this point. 

Exercising the paths; 

Eg. 1 - Digraph 
FIGURE 4 

page 2 
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a b d e g 
a C d f g 

MAY 12, 1988 

yields 10 0 % Cl coverage. 
paths; 

Yet errors may occur in the 

a b d f g 
a c d e g 

The path testing methods discussed in this paper 
represent various ways of addressing this notion that it 
is necessary to test a set of paths that is larger 
and more diverse than a typical Cl cover. 

REVIEW OF TESTING THEORIES 

Ultimately, we are testing the correspondence between 
intended program behavior and actual program behavior. 
Testing theories are based upon different sources of 
information on intended and actual program behavior. 
Functional testing is based on specifications, whereas 
structural testing is based on program implementation. 

Structural methods are more easily automated, and lead 
to an interactive style of testing. These methods 
elicit program behavior under controlled conditions, 
allowing the tester to observe the behavior and compare 
it with expected results. Th is process of ten "draws 
out" of the human mind information regarding the program 
that is difficult, if not impossible to capture in the 
form of rigorous specifications. Structural test 
methods are divided into two categories; those based 
on data flow and those based on control flow. 

Testing theories 
FIGURE 5 

In this paper, the focus will be on control flow. 
Although control flow methods are not sufficient, 
they are necessary. On a deeper level, control flow 
methods are intimately related to program proofs (Howden 
1976}. 

This does not mean that control flow should be used 
exclusively. Each testing strategy has been found to 
be effective in discovering different classes of errors. 

page 3 
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For this reason, the different strategies should be 
viewed as complementary rather than competing {Woodward 
1986). 

PATH TESTING IS THE NEXT LOGICAL STEP 

In figure 1, the coverage measures were listed in order 
of increasing effectivity. The state-of-the-art is 
currently somewhere between branch, which is routine 
practice in some shops, and full path, which is 
impossible. Path testing is significantly better than 
branch testing {Howden 1976) , and is the ref ore worth 
pursuing. 

LIMITATIONS OF PATH TESTING 

Path testing shares all the insufficiencies of control 
flow testing, such as the inability to reveal missing 
functions. There are difficulties related to path 
testing {Howden 1987); 

1. A fault may require that a path be iterated 
a large number of times. 

2. A fault may require a complex pattern of path 
iteration in two or more loops. 

3. There may be infeasible paths. {An infeasible 
path contains contradictory conditions and is 
therefore not executable. These are difficult 
to find, since the conditionals may depend on 
the changing values of variables in a complex 
way.) 

4. There may be too many paths to test, even after 
eliminating infeasible paths. The number of 
paths is potentially infinite due to the 
presence of loops. 

PATH SELECTION 

Out of the potential infinity of paths, what constitutes 
an effec_tive sample? Investigators have suggested a 
variety of methods that constrain the set of paths to be 
examined. 

page 4 
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Path testing strategies 
FIGURE 6 

Some of these strategies are; 

1. 

2. 

3. 

BOUNDARY INTERIOR (Howden 1975) - A 
classification is proposed based upon 
the way a path traverses a loop. The 
idea is to cover the boundaries by 
minimal traversal and maximum traversal 
of the loop. 

LEVEL-i (Paige 1978) - Level-i paths 
attempt to capture the notion of depth 
of nesting of iterations. The level-i 
paths will include a basis set of paths, 
i.e. a set of paths such that any path 
through the graph may be expressed as a 
linear combination of paths in the basis 
set. 

Special path definitions 
FIGURE 7 

LCSAJs (Woodward 1984) - Woodward has 
proposed several levels of coverage that 
begin with the customary statement and 
branch coverage. Higher levels are 
based on LCSAJs and pairs of LCSAJs. 
The LCSAJs for Example 1 (first introduced 
in Figure 4) are listed in Figure 8. 

LCSAJ cover 
FIGURE 8 

(Woodward 1984) has demonstrated that 
LCSAJ testing is a reasonable next step 
beyond branch testing, since the number 
of added paths (beyond branch testing) 
is fairly small. 

Woodward 1984 
FIGURE 9 
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4. DATA FLOW (Fosdick 1976) - In this 
approach, the two major structural 
analysis methods are combined. Data 
flow analysis evolved from global 
optimization techniques used within 
compilers. This method is based on 
our intuitive notions regarding the 
reading and writing of variables. It 
is intuitively plausible, that each path 
between assignment of a variable, and 
usage of that variable should be executed 
Although this is an appealing concept, 
there are some practical difficulties 
related to the tracking of array elements, 
members of structures and variables 
identified by pointers (Frankl 1986). 

5. BOUND ON ITERATION (Sneed 1986) - Sneed 

DIGRAPH 

has reported a commercial tool, SOFTEST, which 
measures branch and forward path coverage 
(paths without cycles). The Ct metric also 
falls into this general category. 

Control flow may be represented by a directed graph. In 
order to i 11 ustrate Ct coverage, it is necessary to 
first set forth some informal definitions, which are 
given in Figure 10. 

Digraph definitions 
FIGURE 10 

Ct K=l TEST COVERAGE METRIC 

The basic concept in Ct coverage is to keep track of how 
many times each loop is traversed. The minimum 
iteration count 'K' is specified for a given test. The 
use of Ct K=l coverage is similar to the strategy 
employed in Cl coverage. In Cl, each decision outcome 
is exercised at least once. In Ct K=l, eich loop in the 
program is exercised at least once. This covers loop 
initialization problems and corresponds with the 
intuitive notion of necessity. 
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The concept of Ct coverage and associated issues will be 
presented informally through a series of examples that 
have been adapted from (Miller 1988)°. Figure 11 lists 
the Ct K=0 paths for example 1, the example program 
first presented in Figure 4. ' 

Eg. 1 - No repetition 
FIGURE 11 

In this digraph, and all further digraphs, code 
segments will be represented by edges, since this makes 
the control flow easier to follow. In this example, 
there is no repetition, so there are no additional paths 
for K > 0. Note that the Ct K=0 paths are the same as 
the level-0 paths. This may result in a general problem 
with Ct coverage, since the number of level-0 paths can 
be very large, as witnessed in Woodward's results, which 
are displayed in Figure 9. The mean is somewhat 
misleading in this case, since most of the routines 
tested had less than one hundred level-0 paths. 

Example 2 illustrates a program with repetition; it has 
two simple loops, segments 'b' and 'd'. 

Eg •. 2 - Graph 
FIGURE 12 

Figure 13 lists the Ct paths for the cases K=0 and K=l. 
The notation 'b' means that edge 'b' is executed exactly 
once. The notation '[bl' is used to indicate that edge 
'b' is executed at least once. 

Eg. 2 - Repetition K=0,l 
FIGURE 13 

Figure 14 lists the Ct paths for K=2. As K gets larger 
than one, the number of paths increases quickly, 
potentially limiting the usefulness of K>l for analyzing 
large programs. 

Eg. 2 - Repetition K=2 
FIGURE 14 
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Si nee this work is experimental, the K=l methodology 
is not yet fully developed. We are using path notation 
adapted from the theory of regular express ions. For 
instance, the '+' operator may be used to solve a 
possible problem with decisions which occur within 
loops. This is illustrated in Example 3. 

Eg. 3 - Graph 
FIGURE 15 

Loops are enumerated by the way in which they are 
entered. The loop beginning with segment 'b' should be 
counted as a single case; it should not matter whether 
segment 'c' or 'd' is traversed. The Ct paths for 
Example 3 are listed in Figure 16. 

Eg. 3 - '+' Operator 
FIGURE 16 

The '+' indicates that either segment 'c' or 'd' may be 
traversed on the given path. Another problem in the 
development of an automated tool for Ct coverage has 
been the presence of unstructured constructs in the 'C' 
language programs. 'C' allows branches out of loops, 
for example; "break", "return" and "exit." 

Some preliminary Ct K=l results have been derived 
from initial runs of the automated tool and checked 
manually. These results, which do not include the '+' 
correction, are shown in Figure 17. 

Preliminary results 
FIGURE 17 

These results, along with other preliminary results, 
suggest that the 'C' functions in this program fall into 
one of two categories; those that have a managable 
number of paths ( less than 100) , and those that are 
"explosive." For instance, Ct can be used as a 
complexity metric. On the basis of these results, the 
largest function, "getscn," should be carefully 
examined, and perhaps partitioned into smaller 
functions. In some cases, functions with a large number 
of Ct paths, such as "putbox," may be testable, because 
of the correspondingly large number of infeasible paths. 
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FUTURE DIRECTIONS 

There are several areas fundamental to path testing that 
require further investigation; 

1. Refinement of the Ct K=l coverage method. 

2. Ct K>l. 

3. A system level Ct K=l tool (similar to 
STCAT, a system testing tool from Software 
Research, Inc.}. 

4. Infeasible paths. 

5. Automatic generation of test cases. 

We hope to have the first i tern completed by mid-year. 
The second area is inherently difficult due to the 
overwhelming number of paths, the extraordinary 
difficulty of constructing test cases and the complexity 
of controlling the iteration counts. The third area is 
a matter of engineering, and the fourth is an open 
question. 

The last area is particularly interesting. This 
problem may be approached by using the finite state 
machine as a program model. Several investigators have 
suggested methods for generating test cases on the basis 
of a finite state machine model derived from functional 
specifications (Chow 1978, Bauer 1979). It should be 
feasible to derive the model from the control structure 
of the program. The state machine model is equivalent 
to the reduced digraph representation, and due to its 
universality, is capable of representing any program. 
In this model, the terminal and decision points within 
the program are interpreted as program states and 
represented by nodes in the diagram. A path becomes a 
sequence of state transitions, as represented by a 
sequence of arcs, taken from the entry node to the exit 
node. The advantage of this model is that there is a 
direct correspondence between the regular expressions 
accepted by the automaton and the equivalence classes 
determined by the path structure of the program. The 
automated test program would therefore; derive the 
state diagram from the source code, generate the set 
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of regular expressions, and convert these into test 
plans. A possible problem in this approach may be the 
large number of states generated by loops in the control 
structure of the program (Masuyama 1983). 
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ABSTRACT 

The use of automated inspection tools for certifying complex 
test equipment can provide the production and quality assurance 
engineers with a consistent set of metrics. Early identification 
of probable design faults, in both hardware and software by the 
use of automated inspection tools, yields a high-quality ·product 
in less time and with less direct cost. 

INTRODUCTION 

This article discusses the use of software tools being developed 
by Sandia National Laboratories for the certification of Automated 
Test Suites with embedded software for high risk weapons programs. 
The certification of automated testers is based primarily upon 
verification of specifications by "Black-Box" testing and evaluation 
of embedded software capability. These tools are presently being used 
throughout the life cycle of High-Risk Automated Testers and can result 
in the development of a "confidence number" which indicates the 
tester's conformance to released specifications. The amount of "excess 
capability" built into the tester with software, which was not tested 
during "Black-Box" evaluation can be identified. 

AUTOMATED TOOL CONCEPTS 

The tools discussed in this paper were developed independently as 
11 stand-alone11 tools to demonstrate feasibility. Sandia National 
Laboratories and the u.s. Army Product Assurance Directorate are 
jointly developing a "Quality Assurance Inspection Program", QAIP, 
which is an integrated program that allows use of a common data base 
by tool programs. The :instalJ,:- ·1 3.>1-:0,;rrans are a.bl-:: to ::.nteract with 
each other via the data base ~}'stem information file, DBIF. Additional 
integrated tools, including user independent tools, will be accessible 
under the common executive program. QAIP is designed to allow diverse 
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users to use all or part of the tools in multiple operating system 
environments with multiple languages. QAIP is presently being targeted 
for the AT&T UNIX version 5 systems, with reduced MS-DOS capabilities. 
The use of QAIP in an integrated environment allows users to confidently 
certify both software and hardware high-risk projects in a consistent, 
reliable, and repeatable manner. 

The use of automated tools to facilitate certification of either 
hardware or software can quickly lead the engineer into a false 
sense of security followed by total frustration. Automated tools are 
generally introduced into the work place with little experience as 
to which metrics are required, how to implement them, or how to evaluate 
the results. Classroom ~xamples and textbook formulas do not transpose 
easily to the production environment. 

Software Branch Analysis 

Sandia National Laboratories Quality Assurance Division started 
using a manual branch analysis metric for reviewing software in 1983. 
At that time, there was no testing methodology for using this metric 
other than that used by strum and ward in evaluating linear circuits. 
T. McCabe of McCabe and Associates was working on the development of 
an automated branch analysis methodology, but had not implemented 
the practical usage. The expectations of testing were raised, but 
practical usage of the metric and consistent interpretation of the Q manually produced graphs proved difficult. 

·O 

Three classifications of software testing are: functional testing, 
structural testing and Code Branch Analysis (walk throughs). 

a. Functional testing: Referred to as "Black-Box" testing 
because the structure of the software is not tested, but 
rather the conformance of the system to specifications is 
tested. The software is tested via the hardware on a "stimuli 
vs response" concept. Two of the most widely accepted 
techniques for functional testing are boundary value analysis 
and equivalence class partitioning. 

Boundary value analysis detects errors at or near the boundaries. 
It is used to assure thorough testing at, above, and below the 
specification values plus any accuracy determinations. 

Equivalence class partitioning is a technique to partition the 
input domain into classes. Xf a test case from the class is 
executed and fails to find an error then any other test case in 
that class would also fail to locate "n error. ~he technique is 
used to reduce the number of tests required. 
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Dynamic testing takes place once the software has been completed 
and is integrated into the host equipment. Test cases developed 
to stress the software are run and the execution observed in 
real time. The effectiveness of dynamic testing is entirely 
dependent upon the test cases developed from the specifications 
and from the static analysis. 

One of the major weaknesses of Functional Testing is that there 
is no way of determining when testing is really completed. 100% 
testing based upon functional requirements may actually check 
only a small portion of the embedded software. 

b. Structural testing: Referred to as 11White-Box11 testing, 
emphasizes the opposite testing approach and stresses the 
software performance rather than conformance to specifications. 
This is generally accomplished by monitoring the programs 
execution and/or by static analysis. Typically, it has been 
observed that full functional testing results in approximately 
30% to 40 % of the software branches being covered. Partial 
functional testing based upon 11best engineering judgement" has 
resulted in 15% to 18 % of the software branch paths being covered. 

One of the most obvious benefits of structural testing is the 
identification of untested code. This is generally code not 
identified as a requirement but is implemented as a result of 
test methodology. structural testing provides a confidence that 
the software is 11good11 • In fact, the software could be fully 
structurally tested and be 11good11 and still fail to meet the 
functional requirements. It is for this reason the functional 
testing and the structural testing must be combined in a cohesive 
test plan. structural testing can be further broken down into 
two phases, static and dynamic. 

The static analysis of the software is best accomplished during 
the design and building of the program. Complex and poorly 
structured modules can be detected early and corrected. Static 
testing is a "White Box" evaluation at this level. The number of 
branches and nodes and the number of linearly independent test 
paths required to cover all branches can be determined. 

structural dynamic testing of software can be accomplished 
during development of the software. Dynamic testing can 
be done on each module or groups of modules using drivers and 
stubs. The static test cases generated during the static analysis 
can be used. Dynamic testing at this level is still "White-Box" 
verification. It is difficult to dynamically test modules a.gainst 
higher level specifications unless extensive stubs and drivers are 
developed. This often takes more time then the program under test. 
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c. Branch Complexity: The number of independent test paths required 
to cover all branches and nodes at least once is defined as the 
module or program "Branch complexity Number". An important 
limitation to static branch analysis is the inability to detect 
time dependent events. Because the static branch analysis metric 
has no concept of timing, code which has timing errors may 0 

be passed as 11acceptable11 • Figure l shows a typical sequence of 
activities when conducting static branch analysis on software. 
Figure 2 shows a similar sequence for dynamic analysis of the 
software. 

d. Structured Walkthrough: The code formally is reviewed by a team 
of trained personnel. This methodology is often referred to as 
the AT&T or IBM approach. Working from released specifications 
the team follows a script in checking and evaluating the soft­
ware. Although this is a labor intensive operation, if it is 
done correctly, the resultant code demonstrates errors of less 
than one per five-thousand lines of code. 

Neither functional testing, structured testing, nor structured 
walkthrough used independently is sufficient to ensure satisfactory 
testing. They must be combined in a systematic method to ensure 
the greatest coverage with the least number of test cases. 

Testing at the system level requires a different strategy. All 
drivers and stubs are eliminated. This forces the system to be 
run and tested in a 11customer" mode. Branch analysis at this level 
is dependent upon the time required to complete a single run. To 
completely specify and run test cases at the system level using 
dynamic testing may require "hundreds" of test cases. While the 
testing is slow at this level, test validity is greatest. There 
are many reasons for this. All of the operational code is installed, 
all hardware interfaces are in place, tests are being run in a normal 
manner, and operational documentation is used. Errors encountered 
during this phase of testing are the most expensive to correct, but 
have the greatest impact on delivered operability of the system. 
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Branch Analysis Errors 

One of the major misunderstandings made of the branch analysis was 
the expectation that software which had low module complexity would 
have low error rates, and software which had high branch coverage 
would have a low number of residual errors. Data and experience 
indicates that there is no inherent direct correlation between high 
branch coverage and low defect rates, or low module complexity and 
low defect rates. The branch coverage is meaningless if test cases 
are not generated properly. Low module or system complexity does not 
indicate the true state of the testability of the software. 

Many of the problems encountered when the branch analysis metric 
was first implemented were caused by setting unrealistically high 
branch coverage requirements and low module complexity requirements. 
There is a proper place for each of these metrics to be used in the 
lifecycle. At the module level of development the static branch 
metric, module-complexity, can be used as an indicator of the module. 
Modules which have high complexity values generally indicate a lack 
of understanding of the event, or a weakness in the specifications. 
It would be a simple task to conduct branch analysis on all software 
at this level. The tester knows the code, and error conditions can 
be forced. The use of Stubs and Drivers can facilitate execution of 
the code. Unfortunately testing at this level has a limited value. 
The tests being conducted are inductive of the software structure 
and not of any specification functionality. It is often trivial to 
achieve 100% coverage at this level and develop a false sense of 
security, with no real test results being generated. The static 
metric is of value, but should be used with full understanding of 
the metrics limitations. 
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QUALITY ASSURANCE CONCEPTS 

Quality Assurance is a collection of techniques which seek to 
assure the hardware and software actually function as defined by 
the specifications. This type of activity is part of the whole 
lifecycle, but special methods are employed to focus on the 
certification of tester hardware and software quality issues. 

There are many approaches used to accomplish quality objectives. 
The automated tools being developed by Sandia National Laboratories 
stress certification of automated testers against released 
specifications using demonstrable test cases. 

The Quality Assurance Inspection Program, QAIP, being developed 
by Sandia National Laboratories, is a software executive program 
which provides user interface to diverse quality assurance programs. 
There are presently three such programs which can be accessed from 
the QAIP main menu: 

a. 11T11 : An automated and computer-aided test generation tool, 
developed under an Army contract by Product Environ­
ment Inc. (PEI). Specifications are entered in 
response to prompts, valid as well as invalid test 
cases are generated for use in "black-box" testing. 
The test cases generated by "T" confirm that the 
specifications are implemented by either the hardware 
design or the software design. 

b. 11S PATm11 : The Software Path Analysis Tool for software modules 
is a static tool developed for Sandia National 
Laboratories based upon development work done by strum 
and Word of the Naval Post Graduate School, McCabe and 
Associates, and the u.s. Army Product Assurance 
Directorate Technology Office. The s PATm tool parses 
and analyses the source code for a specified language 
at the module level and displays a decision logic 
diagram of the module's structure, from which software 
or 11white-box11 test cases can be generated. 

c. 11TCAT: The Test complexity Analysis Tool is one of a group 
of software dynamic tools developed by Software 
Research Associates (SRA), and modified with Sandia 
National Laboratories for the Hewlett-Packard Advanced 
Basic. The TCAT dynamic tool, at the module level, 
instruments the program and provides dynamic traces 
at the module level. The TCAT is used with the test 
cases generated with the 11T11 tool, S PATm tool, or 
other test-case development methods.-

!?IE: A Peripheral Interface Emulator, is a hardware 11smart-box11 

interface which allows the programmer to control the data 
returned when a program accesses an external device such as a 



0 

0 

0 

digital multimeter. It can be programmed to compare "as-read" 
values with specification limits. PIE allows partial dynamic 
checkout of tester software using test cases developed without 
requiring the actual peripheral devices to be physically present. 

The programmer is able to enter the 11device11 addresses, expected 
return value and specification limits. When the program is executed, 
it outputs data to the desired address and receives data. The 
results of the received data will cause valid as well as invalid test 
cases to be evaluated. The "PIE" box can store the test, the time of 
the test, the prompt, the value returned, and the correct limit for 
later data dump and evaluation. 

The use of "PIE" should enable programmers to develop the test 
software independent of the delivered hardware. Full independent 
software evaluation is not feasible due to timing constraints and 
unique "smart-chassis", however PIE should allow early delivery 
of a higher quality software prior to hardware/software integration. 

Figure 3 
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AUTOMATED TEST EQUIPMENT LIFECYCLE 

Figure 3 is representative of test systems certified by Sandia 
National Laboratories for the Department of Energy. In the 
academic lifecycle of high-risk test suites the development of 
the hardware and the software occurs only after the specifications 
have been reviewed, corrected and issued, as shown if Figure 4. 

once the system requirements are released, both the software and 
the hardware design, test, and review processes begin and continue 
nearly in parallel. Upon completion of the hardware, the software 
which is ready to be installed, is installed in the hardware and 
integration testing commences. 
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0 In fact the actual development of the test suite more accurately 
follows the lifecycle shown in Figures. 
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The specifications are "soft•• at the beginning of the project, but 
funding has been allocated and hardware placed on order. The 
hardware design continues, based upon best estimates, with the 
expectation that future changes can be incorporated via software. 
The software is never defined with firm specifications. It remains 
a "shadow" of the system functional specifications. It is natural 
therefor for the software development to lag the hardware. Some 
early software work is done without firm software specifications, 
automated tools or emulators. once the hardware completes initial 
fabrication, both the hardware and the software engineer vie for 
limited resources. The general result is that the software is 
integrated into the tester and "debugged" on the fly with the earnest 
hope that there is enough time. 

Sandia National Laboratories has enhanced the Product Quality 
Assurance Team (PQT) concept, used in certifying hardware and 
software, for the use of automated inspection tools. Under the 
PQT concept the Quality Assurance, Design, Test Equipment and 
Product Engineers form a Product Quality Assurance Team early in 
the tester life cycle. Figure 6 shows the product lifecycle with 
the PQT concepts and the automated tools combined • 
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The first unreleased draft of the product specifications which 
controls the tester design, is processed by the Quality Engineer 
using the specification program. The first set of test cases 
generated is voluminous. An example of a single specification 
illustrates the number of test cases which can be generated: 

The flight power pulse shall rise to a voltage of 15 volts 
+/- 1% in less than 1 millisecond 

volts time status 
15 .75 ms valid 
15.15 .75 ms valid high bound (hb) 
14.85 .75 ms valid low bound (lb) 

0 • 75 ms invalid zero case (ilb) 
14.80 • 75 ms invalid low bound minus (ilb-) 
15.20 .75 ms invalid high bound plus (ihb+) 
15.0 • r;g··ms v~lid high bound minus (Vhb-) 
15.0 1.00 ms invalid high bound plus (ihb+) 
15.0 o.oo ms invalid clock failure 
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If the test specification were changed to read: 

The flight power pulse shall rise to a voltage of 15 volts 
+/- 1% in less than 1 millisecond with a ripple of less 

than 10 mv +/- 1% 

The resulting test cases would be: 

volts time ripple status 
15 .75 ms r< 10 mv valid 
15.15 .75 ms r< 10 mv valid high bound 
14.85 .75 ms r< 10 mv valid low bound 

0 .75 ms r< 10 mv invalid zero case 
14.80 .75 ms r< 10 mv invalid low bound minus 
15.20 .75 ms r< .10 mv invalid high bound plus 
15.0 .99 ms r< 10 mv valid high bound minus 
15.0 1.00 ms r< 10 mv invalid high bound plus 
15.0 o.oo ms r< 10 mv invalid clock failure 
15 .75 ms r= 10.1mv valid ripple, Uhl:> 
15 • 75 ms r= 9.9mv valid ripple, llb 
15 .75 ms r= 10.2mv invalid ripple uhb+ 
15 .75 ms r= 15 mv invalid ripple 
15.15 .99 ms r= 10.2mv valid stress uhl:> 
14.85 .99 ms r= 10.2mv valid stress llb 

The above example illustrates the rapid growth of test cases if 
extensive testing were attempted. Based upon the example, there would 
be 1500 test cases per thousand specifications. To help reduce the 
test burden the test cases might be partitioned using equivalence 
class techniques. If the design of the software acceptance and 
exception handlers were known further test class reductions might 
be achieved. When the final set of test cases are agreed upon, they 
represent a set of 11critieal11 test cases. Failure to execute a test 
in this set fails to test an entire class of tests or software. 

The resulting test eases and known certification requirements are 
listed in a "Product Qualification Plan" (PQP), and formally 
released. The released PQP provides the tester engineer with the 
baseline for acceptance testing the test-suite will have to meet. 

The PQP serves as a development baseline guide for design and 
testing of the hardware and for the software modules. The test 
cases are also placed in a test-file for use during final certifica­
tion of the tester. Software development continues, independent of 
the hardware fabrication using the test cases developed by the 
automated specification program, the Static Path Analyses Tool, and 
the PXE box. Softwc1.re modules c1.re checked using S PATm, and 11White­
Box11 test eases developed. Figure 7 illustrates an 11untestable 11 

module while Figure 8 illustrates a 11 testable11 module. In both cases 
the modules function and appear to satisfy system requirements. In 
figure a, the test paths through the module can be determined using 
s_PATm, but because of the large number of variables required to 
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execute the test cases, they cannot be physically implemented. 
Modules of this size and complexity generally indicate poor specifi­
cations, poor programmer understanding of the specification, 
confusion, or all the above. The module may appear to work, but 
cannot be maintained. Future changes to the module may result in 
totally unexpected results. Test cases can be easily generated and 
applied to the program module shown in figure·&, because it is · 
easily understood and testable, therefore it is easily maintained. 
Figure 9 shows the code logic diagram of figure 7 with four lines of 
code changed. While the module is still difficult to analyze, it is 
apparent that additional changes can be made which will allow the 
module to analyzed, tested, and maintained. 

The ability to test the module and compare the results against 
released specifications enhances the confidence of the module and 
the maintainability of the program. 

The test cases developed during the use of the s PATm are placed 
into a test file with the test cases developed from-the "T" tool or 
manually generated specification tests, for combined use during 
final tester evaluation. When the software is integrated with the 
hardware and system prove-in begins, the quality assurance engineer 
begins initial testing using the test cases developed and stored in 
a data-base file. In addition to using the S_PATm tool, the dynamic 
run time tool, TCAT, is used to evaluate the software. Using the 
test cases developed with "T" ands PATm, the program is run in an 
emulator mode and the paths through-the software are recorded as is 
the total number of possible test paths. The ratio of test paths 
executed to the total possible test paths constitutes a metric 
called coverage. The Cl metric is the coverage of a single test 
case, while the C2 metric is the summation of linearly independent 
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test paths covered during all testing compared to the total 
independent test paths. Software test paths not tested are 
identified and evaluated and a decision made as to whether the 
paths are additional capability, low risk or high risk, specifica­
tion dependent, and additional tests are required by the PQT. 

Upon completion of emulation testing, the Product Quality Team is 
able to determine whether all specifications have been implemented 
via software, how the software functions under exception testing, 
and what excess capability has been built into the tester that was 
not required by the specifications. Final certification testing of 
the test suite is accomplished by the PQT using evaluated software 
and the host system. Using the results of the quality assurance 
evaluation, the system is tested using released documentation and 
a second dynamic tool developed by SRA called S TCAT. S TCAT is 
a system-level version of the TCAT and provides-coverage-analysis of 
the system path coverage. The coverage metric, C3, provides path 
analysis of the released specifications developed with the automated 
specification tool. s TCAT is presently under development for the 
Hewlett-Packard Advanced 5.0 Basic. 

The verification of the test suite using the automated tools allows 
the PQT to determine the degree to which the tester meets required 
~pacifications. It further identifies excess system capability built 
into the test suite which was not required by the specifications. 
The degree of specification verification provides the basis for the 
"confidence-number" for the test suite. A test suite for which all 
specifications have been met and tested and no high risk excess 
capability, would be assigned a confidence-number of 100. The 
confidence number indicates the capability of the test suite to 
repeatedly perform all specification testing for the life of the 
tester. The use of the published test cases and requirements also 
provides the test equipment engineers with an 11acceptance11 criteria 
early in the development cycle. 

When the test suite is modified, the original test cases used to 
verify the specifications and the modified test cases developed 
are used to recertify the test suite in an easily controlled and 
documented fashion. 

QAIP REDESIGN 

The automated tools presently being used are independent. Data 
transfer between the tools, and interpolation of data is accomplished 
by the operator. The QAIP tool is presently being redefined jointly 
by Sandia National Laboratory and the u.s. Army Quality Assurance 
Directorate to integrate the functions of a group of hardware and 
software tools. The use of a common data base and emulators provides 
a tool which can be used by operators with diverse background and needs. 
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While all functions of the QAIP program are linked via the data base, 
each capability is modular and can be deinstalled and replaced with 
no affect to the operation of the remaining modules. The design 
capabilities of QAIP are: 

a. Executive Program: Provides a "user friendly" interface 
between the operator and the system modules. Printer, Plotter, 
and Screen types are installed. Data file source and destination 
are retained for use. 

b. Word Processor: A link is established to the local word processor 
so each user can control the data and the reports generated. 

c. specification Tool: Allows user input of specifications and 
accuracy requirements and generates test cases required to 
ensure 100% specification test coverage. Test files generated 
are maintained in the Data Base Information File and printed 
as part of a preformatted "Testing Document". 

d. Language Parser: A parser for any language which provides the 
mapping to determine the branch and node interconnections. 
All parsers conform to the DBIF interface definition. The 
parser allows parsing of a module, group of modules, or the 
system. 

e. Static Analyzer: The static analyzer uses the information in 
the DBIF from the parser to: 

1. 

2. 

3. 
4. 

s. 

6. 

7. 
8. 

9. 

calculate the minimum. number of test paths through the 
module(s) or system. 
generate the test cases required to transverse each 
test leg for the module and system level. 
record the starting and ending line number of each module. 
annotates the code listing to correspond to the branch­
node graph. 
provides for printout to printer, plotter or screen of 
the branch-node graph. 
allows editing of a file and reparsing of the file. The 
reparsed file is given.a new suffix. 
generate a 11Call-Willcall11 map. 
generate a cross-reference listing of names, labels, 
variables, subroutines, functions, 
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f. Dynamic Analyzer: The dynamic analyzer instruments the source 
code and establishes a local data file. The source code 
instrumentation is linked to the branch-node definition of the 
static analyzer. The Dynamic analyzer: 

1 •. records the branches and nodes covered as each test 
case is run. 

2. each test case records the individual coverage (C1) 
and the cumulative coverage (C2). 

3. provides for printing a listing of "branches hit" and 
"branches-not bit11 • 

4. provides an output to the screen, plotter, or printer 
of the "branches hit" and /or the "branches not hit" 
overlaid on the static branch-node graph. 

s. 

Upon completion of all testing, the Dynamic Analyzer transfers 
the data files to the DBIF. 

g. statistics: The statistics module provides standard data 
reduction and evaluation capabilities. Data which is recorded 
during testing can be retained and analyzed off-line. 

h. Graphics Program: The graphics program interfaces directly with 
the DBIF and provides plotter, printer, and screen outputs. The 
graphics program is driven by the DBIF data interface specifica­
tions and will present the same graphics regardless of the 
design language being used. This provides the user with a 
common visual interface. 

i. Oser Tools: The executive program provides for up to six user 
programs to be linked to the selection menu. The user programs 
are not linked to the DBIF but can be run from the executive 
program. 

j. Flow Chart: The flow chart program uses the parsed DBIF and 
produces a module level flow chart of the code. The program 
can be viewed and edited on the screen. Plotter and printer 
outputs in a "compressed no Alpha mode" or a 11multipage detailed 
mode11 • 
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SUMMARY 

The use of automated inspection tools can increase the confidence 
of the user that test suites are performing per their specifications 
and will fail in a predictable manner. Where test case generation, 
software inspection, and dynamic testing are being done manually, the 
use of automated tools results in a dramatic decrease of time and 
dollars with a corresponding increase in observed reliability. Where 
such activities are not being done, the implementation of an automated 
test and inspection process will increase both time and dollars. But 
the observed reliability will be decidedly improved. 

The implementation of the automated tools must be tailored to each 
agency's needs. It is possible to 11graft11 tools from one user to 
another, but the tailoring is still required. There are no "SILVER 
BULLETS" in quality assurance. 

1. 

2. 

3. 

4. 

s. 

6. 

7. 

8. 

9. 

10. 
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TYPES OF CERTIFICATION PROCESSES 
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WHAT CONSTITUTES A HOSTILE ENVIRONMENT? 

Q INABILITY TO CONDUCT FULL HW / SW TESTING 

o INABILITY TO DESIGN FROM FIRM SPECIFICATION 

o LACK OF DEVELOPMENT TEST DAT A 

o LACK OF COMPREHENSIVE KNOWLEDGE OF SYNTAX OF 
LANGUAGE BEING USED 

o LACK OF UNDERSTANDING OF THE ROLE RELATIONSHIPS 
OF HARDWARE AND SO'FTWARE 

o LACK OF SOFTWARE CHANGE CONTROL 

o CONCEPT THAT QUALITY IS GREAT IF IT: 
A. DOESN'T TAKE ANY EXTRA TIME 
B. DOESN'T COST ANYTHING 
C. DOESN'T DELAY PRODUCTION 

o LACK OF FIRM REQUIREMENTS FOR HW OR SW 

0 
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SOME MISCONCEPTIONS CONCERNING TESTING: 

88F7000.10 

~ TESTING IS THE PROCESS OF DEMONSTRATING 
THAT ERRORS ARE NOT PRESENT 

@ THE PURPOSE OF TESTING IS TO SHOW THAT 
A PROGRAM PERFORMS ITS INTENDED 
FUNCTION{S) CORRECTLY 

o TESTING IS THE PROCESS OF ESTABLISHING 
CONFIDENCE THAT A PROGRAM DOES WHAT 
IT IS SUPPOSED TO DO 
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RESUl T OF APPLICATION OF 
THESIE MISCONClElPTIONS: 

Q IF THE GOAL IS TO SHOW NO ERRORS, THAT 
IS WHAT THE ·TEST CAS.ES WILL DO 

• IF THE GOAL IS TO SHOW OFF THE PROGRAM'S 
STATED FUNCTIONS, THE TEST CASES WILL 
SHOW LITTLE ELSE 

o IF THE GOAL IS TO PROVIDE CONFIDENCE THAT 
A PROGRAM IS PERFORMING CORRECTLY, THE 
LAST THING A TEST CASE WILL DO IS 
FIND ERROR·S 
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SPIEC~FICATION TEST GENEIRAT~ON TOOL 

ssF1000.14 

(''T'') 

A TOOL WHICH CONTROLS OPERA TOR 
INPUTS OF SPECIFICATIONS AND 
GENERATES A SET OF LINERLY 
INDEPENDENT TEST WHICH ENSURE 
ALL SPECIFICATIONS ARE COVERED 
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T TOOLS 
88G7000.30 

EDIT SOFTWARE IDENTIFICATION 
EDIT SOFTWARE DESCRIPTION 

VERIFY TERMINOLOGY 
VERIFY REQUIREMENTS 

TRANSFORM PRESENTATION 
ASSIGN REQUIREMENTS TO SETS 

COLLECT TESTING SPACES 
CHOOSE REFERENCE POINTS 

SI 
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OBJECT 

STATE 
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,r Unit: alltimer ver 1 BBG7000.32 

Report: Software Identification 

Testunit is not protected Rev 21:59 08-26-87 

Description 
Sample testunit. This FORTRAN subroutine will 
produce an updated data and time, given reference 
date and time and some number of minutes (positive 
or negative) by which to shift the reference. It 
is used for the calculation of radiation exposure 
in the event of a leak from a nuclear power plant 
reactor. It should probably be tested rather 
"thoroughly." 

References 

Code 

MS 

Document Names 

Module Specification for XXXXXXXX, version 1.2a 
filed in software library under project NR-MON. Sandia 

National 
Laboratories 



0 

T Unit: alltimer ver 1 
Report: Dataltem Listings 

28_ day_ counter 
Type 
Unit 
Mn/Mx/Rs 
Desc 
Tels 

28 _day_ month 
Type 
Desc 
Tels 

29 _day_ counter 
Type 
Unit 
Mn/Mx/Rs 
Desc 
Tels 

29 _ day_ month 
Type 
Desc 
Tels 

88(;7000.33 

0 

- day28 
integer 
day 
1/28/1 
valid counter for 28-day month 
v nm 1 @ 7 
V lb @ 1 
V hb @ 28 

0 

Rev 13:50 06-29-87 
Grp -

- mon28 Rev 13:50 06-06-87 
choice Grp -
a month having 28 days (normal year, feb) 
v nm 1 @ February 

- day29 
integer 

Rev 13:50 06-29-87 
Grp -

day 
1/29/1 
valid counter for 29-day month 
v nm 1 @ 7 
V lb @ 1 
V hb @ 29 

- mon29 Rev 13:50 06-29-87 
choice Grp -
a month having 29 days (leap year, feb) 
v nm 1 @ February Sandia 

National 
Laboratories 
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T Unit: alltimer ver 1 
Report: Dataitem Listings 

3 O _ day_ counter 
Type 
Unit 
Mn/Mx/Rs 

integer 
day 
1/30/1 

0 

- day30 

Desc valid counter for 30-day month 
Tels v nm 1 @ 7 

30 _ day_ month 
Type 
Desc 
Tels 

31 _ day_ counter 

88G7000.38 

Type 
Unit 
Mn/Mx/Rs 
Desc 
Tels 

V lb @ 1 
V hb @ 30 

- mon30 
choice 
a month having 3 O days 
v nm 1 @ April 
v nm 2 @ June 
v nm 3 @ September 
v nm 4 @ November 

- day31 
integer 
day 
1/31/1 
valid counter for 31-day month 
v nm 1 @ 7 

0 

Rev 13:50 06-29-87 
Grp -

Rev 13:50 06-29-87 
Grp -

Rev 13:50 06-29-87 
Grp -

Sandia 
National 
Laboratories 
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T Unit: alltimer ver 1 
Report: Dataitem Listings 

user- entry 
Type 
Desc 
Tots 

V tr 1 
V tr 2 
V tr 3 
V tr 4 
V tr 5 
V tr 6 
vlb 
V lb+ 
V hb­
V hb 
i an 1 
i an 2 
i lb -
i hb + 

sequence 

@ 0 
@ - 1 
@ 1 
@ 1439 
@ 1440 
@ 1439 
·@ .. 527040 
@ - 527039 
@ 527039 
@ 527040 
@ null 
@ ss 
@ - 527041 
@ 527041 

- uniput 

user entry: date time shift 
v nm 1 calendar_ date 

+ time - of - day 

0 

88G7000.29 

Rev 16:31 06-29-87 
Grp -

Sandia 
National 
Laboratories 
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soIF·rwA~E PATH ANALYS~S lOOlS 

(!PATS) 

88F7000.13 

A SET OF SOFTWARE TOOLS WHICH 
WILL AUTOMAT~CALL Y "READ'' THE 
HOST SOFTWARE AND DETERMINE 
METRIC MEASUREMENTS 
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Laboratories 
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I. CAPABILITIES OF PAT_ S 

o ABLE TO READ PRODUCTION CODE OFF A PRODUCTION 
DISK AND ANALYZE THE CODE FOR: 

- SYNTAX ERRORS 
- DECISION NODES 
- LOOPS 
- BRANCHES (LONG AND SHORT) 
- INTERRUPTS 
- COMPLEXITY OF EACH MODULE 
- CRITICAL TEST PATH 

o GRAPHS THE LOGIC OF THE MODULE 

o PRINTS AND GRAPHS ALL LINEAL Y INDEPENDENT TEST 
PATHS OF THE MODULE 

o ALLOWS EDITING OF A MODULE 

II. INCREASES INSPECTION THROUGHOUT FROM 1000 LOC/WEEK 
TO= 8000 LOC/WEEK 

88F7000.15 

0 

Sandia 
National 
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File:CSELECT.BAS 
ANNOTATED SOURCE LISTING 

DATE/TIME: WED FEB 11 18:59 
Language: H.P. BASIC PAGE 1 

MODULE MODULE PREDICTIVE STARTING NUMBER 
LETTER NAME TEST PATHS LINE OF LINES 

A SUB _ Initialize 1 62 17 
B SUB _ Rack _ turn _ on 1 82 60 
C SUB _ Graphic _ message 2 145 20 
D SUB_ Chan_ id 1 168 24 
E SUB _ Multiplexchan 1 195 3 
F SUB_ Serialnumber 8 201 230 
G SUB_ Titlepage 4 440 26 
H SUB _ Voltmeter 1 470 4 
I SUB _ Voltmeter _ Id 1 477 8 
J SUB _ Drawertest 11 488 155 
K SUB _ Passfall 3 646 14 
L SUB _ Dataheader 1 663 7 
M SUB _ Openlooptest 10 673 56 
N SUB _ inittwopolnt 10 733 66 
0 SUB _ Repeatability 18 803 164 
p SUB _ Fourpolnttumble 14 971 81 
Q SUB _ Pfcolor 2 1056 9 
R SUB_ Push 15 1068 78 
s SUB _ Voltagesource 1 1150 3 
T SUB _ Pushtest 12 1156 71 
u SUB_ Minmax 4 1231 10 
V SUB_ Graph 2 1244 6 
w SUB_ Paplot 3 1253 46 
X SUB_ Labels 2 1302 18 
y sue_ Test 1 1323 9 
z SUB _ Biasplot 3 1335 36 
a SUB_ Allgnplot 3 1374 36 
b SUB _ Springplot 6 1413 49 

~Sandia 
C SUB_ Curveflt 4 1465 30 National 

88F7000.41 d MAIN 7 1 58 Laboratories 



MENUSMAL.BAS 
Menu (A) 

Qyclomatic 9 
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Wed Apr 13 14:27 
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Loop Exits 
Plain Edges 
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DYNAM~C TRACE TOOLS 

{TCAT, S--1'CAT) 
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OVERVIEW OF TCAT /BASIC FOR HP BASIC 3.0 

I DOS HP - BASIC 3.0 I 
BASIC SOURCE - BASIC SOURCE 

PROGRAMS ~ PROGRAMS 

v 
- REFERENCE ,~ 

INSTRUMENTER ,... 
LISTINGS 

v 
INTRUMENTED - TCAT RUNTIME PROGRAMS .... 

t 
TEST 

EXECUTION 

t 
TRACEFILES -

, J • 1 

COVERAGE -- TRACEFILE QUICK.C1 
ANALYZER 

~ 

COMPACTOR ANALYZER 

v * * COVERAGE COMPACTED QUICK COVERAGE 
REPORTS TRACEFILES REPORTS 

. . @) Sandia National Laboratories 88G7000.61 
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88G7000.31 

0 0 

LANGUAGE PARSERS (8 IDENTIFIED TO DATE) 

LWP 

. EQ TEST CASE FILES 

SYSTEM TEST CASE FILES 

SPECIFICATION HS 

STATIC TOOLS (3) 

DYNAMIC TOOLS (3) 

STATISTIC TOOL 

CALLING CHART 

GRAPHICS 

INSTALL 

AUTOMATIC FLOW CHART GENERATOR 
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TESTER FAB 
SRR PRELIMINARY 

4 4 
I I 
I I 

I 

REVIEW 

TASKS PQT 

FINDING 
FORMS 

SCPD PLAN* 
( fl) ) -- SPECIFICATION 1---1~ 

- TOOL 

SCPD • SYSTEM CERTIFICATION PLANNING DOCUMENT 

PQT - PRODUCT QUALITY TEAM 

PTRD - PRODUCT TEST REQUIREMENTS DOCUMENT 

PS - PRODUCT SPECIFICATIONS 

PQD - PRODUCT QUALIFICATION DOCUMENT 

SRR - SYSTEM REQUIREMENTS REVIEW 

88F7000.40 

I 1 I DATA FILE 

0 

PQD ( fO) 
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Edward F. Miller 

Software Research, Inc. 
San Francisco, California 

Topic: Starting a Q.A. Testing Group from Scratch 

Edward Miller is President and Technical Director of Software Research, Inc. (SR), 
San Francisco, California. SR specializes in software quality management and high 
quality software engineering. Dr. Miller has worked in the software quality 
management field for 20 years in a variety of capacities. He has been involved in the 
development of families of automated software and analysis support tools. He was 
chairman of the 1985 First International Conference on Computer Workstations, and 
has participated in IEEE conference organizing activities for many years. He is the 
author of Software Testing and Validation Techniques (Second Edition), an IEEE 
Computer Society Press tutorial text. Dr. Miller serves as chairman of SR's Quality 
Week and will present the 1-day seminar: Advanced Software Test Methods. 
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Vern Crandall 

Brigham Young University 
Provo, Utah 

Topic: Software Quality: Product Verification, Design Analysis, and Code 

Vern Crandall started the software engineering curriculum at Brigham Young 
University in 1975. Dr. Crandall currently teaches a novel course in which students 
test commercial software submitted by major companies nationwide, including 
NOVELL, WordPerfect, Microsoft, and IBM. For the past ten years, in addition to 
teaching at BYU, he has taught software design and improved programming 
technology worldwide for IBM. Dr. Crandall started in the computer business 35 
years ago, working in his father's service bureau, and majored in Biomathematics in 
Medical School. · 
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PRODUCT VERIFICATION TESTING 

DESIGN ANALYSIS 

CODE QUALITY 
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INTRODUCTION 

TESTING--WHILE IT HAS BEEN AROUND SINCE PROGRAMMING CAME 

INTO BEING--IS STILL A NEW, SOMEWHAT UNDEFINED AREA, 

• 

• 

IT LACKS CONSISTENT DEFINITIONS, 

IT LACKS STRATEGIES, 

IT LACKS METHODOLOGIES, 

IT LACKS FRAMEWORKS, 

IT LACKS AUTOMATED TOOLS, 

IT LACKS MANAGEMENT SUPPORT AND ADEQUATE 

BUDGET AND TIME, 

EVEN THOUGH MANY BOOKS HAVE BEEN WRITTEN ON THE 

SUBJECT. 
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INTRODUCTION 

MUCH HAS BEEN WRITTEN AT THE UNIT TEST LEVEL. 

SOME HAS BEEN WRITTEN AT THE INTEGRATION AND SYSTEM 

TEST LEVEL. 

PRACTICALLY NOTHING HAS BEEN WRITTEN AT THE DESIGN 

ANALYSIS LEVEL OR THE PRODUCT VERIFICATION LEVEL. 

A MAJOR CONSIDERATION IS THAT IT IS DIFFICULT TO COME UP WITH A 

FRAMEWORK FOR TESTING AN ENTIRE PRODUCT AND HAVE IT APPLY ACROSS 

A NUMBER OF DIFFERENT PRODUCTS. EAcH PRODUCT SEEMS TO HAVE A 

DIFFERING SET OF CHARACTERISTICS WHICH MUST BE TESTED IN 
.. 

COMPLETELY DIFFERENT WAYS. 

BECAUSE THE SOURCE CODE AND SOFTWARE ARCHITECTURE 

DESIGN DOCUMENTATION ARE RARELY AVAILABLE TO THOSE 

DOING PRODUCT VERIFICATION TESTING, TESTING MUST 

REVOLVE AROUND USER'S MANUALS, SCREENS AND SCREEN 

DOCUMENTATION, AND HELP FILES. 
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INTRODUCTION 

SINCE THESE THREE AREAS ARE SELDOM--IF EVER--ADDRESSED, 

I WILL BRIEFLY DISCUSS: 

PRODUCT VERIFICATION TESTING 

DESIGN ANALYSIS 

CODE QUALITY 

FROM A TESTING AND MAINTENANCE POINT-OF-VIEW. 
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INTRODUCTION 

SOFTWARE DEVELOPMENT HAS THREE GROUPS WITH OFTEN 

CONFLICTING GOALS: 

SOFTWARE DEVELOPERS--"CORRECTNESS" AND 

EFFICIENCY, 

SOFTWARE TESTERS--EASE OF TESTING, 

SOFTWARE MAINTENANCE PROGRAMMERS--EASE OF 

MAINTENANCE. 

USUALLY SOFTWARE TESTERS AND SOFTWARE MAINTENANCE 

PROGRAMMERS HAVE SIMILAR--OR THE SAME--GOALS, BUT NOT 

ALWAYS! 

ALL THREE GROUPS SHOULD BE INVOLVED WITH EACH OTHER 

ACROSS THE SOFTWARE DEVELOPMENT LIFE CYCLE TO PROVIDE 

FOR THE BEST COMPROMISE AMONG THE COMPETING GOALS, 

DESIGN REVIEWS, 

CODE INSPECTIONS. 

TEST CASE INSPECTIONS, 

ETC. 
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PRODUCT VERIFICATION TESTING 

DEFINITIONS IN THE TEST ENVIRONMENT: 

PRODUCT VERIFICATION TESTING IS LOOKING AT "CORRECTNESS" AND 

"QUALITY" OF A SOFTWARE PRODUCT FROM THE OUTSIDE-IN. IT 

DIFFERS FROM STANDARD, WELL-KNOWN TEST PROCEDURES IN THAT 

ONE DOES NOT LOOK AT THE CODE OR THE SOFTWARE STRUCTURE, 

RATHER, ONE EXAMINES THE PRODUCT FROM THE USER'S 

PERSPECTIVE. 

TYPES OF TESTING PERFORMED IN THIS CONTEXT ARE: 

USABILITY TESTING: 

TEST THE RELATIVE EASE OF USING THE PROGRAM, ITS 

SCREENS, FUNCTIONS, USER'S MANUALS, ETC.--FROM THE 

USER'S POINT-OF-VIEW. ARE THE PF KEYS CONSISTENT 

FROM SCREEN TO SCREEN? ARE THE SCREEN FORMATS 

CONSISTENT, CLEAR, AND EASY TO FOLLOW? ETC, 

FUNCTIONALITY TESTING: 

TEST THAT ALL THE FUNCTIONS NECESSARY FOR THE 

OPERATION OF THE PROGRAM FROM THE USER'S POINT-OF~ 
~ ARE PRESENT--AND ARE EASY TO IDENTIFY AND 

EXECUTE. CAN A USER DO WHAT HE/SHE WANTS TO DO 

WITH THt P~CGRAM? 



0 

0 

0 

8 

PRODUCT VERIFICATION TESTING 

DEFINITIONS IN THE TEST ENVIRONMENT: 

• 

PERFORMANCE TESTING: 

TEST THE PERFORMANCE OF THE PROGRAM. Do ALL THE 

FUNCTIONS OPERATE FAST ENOUGH? ARE ALL OPERATIONS 

CONSISTENT FROM SCREEN TO SCREEN, POINT TO POINT 

WITHIN A SCREEN, ETC.? ARE THERE UNNECESSARY KEY 

STROKES IN GETTING FROM FUNCTION TO FUNCTION, 

ETC.? 

RELIABILITY TESTING: 

TEST THE ABILITY OF THE PROGRAM TO PERFORM 

CONSISTENTLY OVER LONG PERIODS OF TIME--IN 

CONNECTION WITH THE HARDWARE--WITHOUT PRODUCING 

SYSTEM CRASHES, DATA (OR CALCULATION) INTEGRITY 

PROBLEMS, OR 1/0 ERRORS. [ETC.] 
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DESIGN ANALYSIS 

ERROR TRACKING 

THE ONLY WAY TO DETERMINE THE COST OF FINDING AND 

FIXING ERRORS AND DETERMINING WHEN AND WHERE THEY 

SHOULD HAVE BEEN FOUND IS THROUGH ERROR TRACKING. 

A MECHANISM MUST BE PUT IN PLACE TO CAPTURE ROUTINELY 

INFORMATION ABOUT ERRORS--INCLUDING ERRORS WHICH 

PROGRAMMERS FIND WHILE DESIGNING, PROGRAMMING, CODING, 

AND COMPILING THEIR PROGRAMS. 

ERRORS SHOULD BE TRACED BACK INTO THE CODE TO THE 

ACTUAL MODULE IN WHICH THEY OCCURRED; THEY SHOULD BE 

TRACKED BACK INTO THE LIFE CYCLE TO DETERMINE WHETHER 

THEY COULD HAVE BEEN CAUGHT EARLIER WITH APPROPRIATE 

DESIGN REVIEWS, CODE INSPECTIONS, OR TESTING. 

CHECKLISTS AND OTHER SAFEGUARDS SHOULD BE PUT IN PLACE 

EARLY IN THE LIFE CYCLE TO AID IN FINDING THESE ERRORS 

AT POINTS AND TIMES WHERE THEY ARE RELATIVELY 

INEXPENSIVE TO FIND AND FIX. 
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DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

TESTING CAN BE MADE MORE EFFECTIVE BY ANALYZING THE PROGRAM 

AND TESTING CODE WHICH IS MOST LIKELY TO CONTAIN ERRORS, 

CODE LIKELY TO CONTAIN ERRORS CAN SOMETIMES BE DETERMINED 

THROUGH SEVERAL MEANS: 

EXPERIENCE: SOME CODE TENDS TO BE ERROR-PRONE BY ITS 

VERY NATURE, E.G., ERROR HANDLING ROUTINES. EXPERIENCE 

ACROSS SEVERAL PROJECTS CAN POINT TOWARD SUCH AREAS. 

ASSOCIATING ERROR RATES WITH CERTAIN TYPES OF MODULES 

CAN AID IN IDENTIFYING THEM. 

DESIGN QUALITY: WHERE POOR SOFTWARE ARCHITECTURAL 

DES I GN (MYERS' CONCEPTS) IS PRES ENT, ERRORS TEND TO 

OCCUR. 

CODE QUALITY: WHERE CODE IS UNNECESSARILY COMPLEX AND 

CONTAINS MANY UNSTRUCTURED STATEMENTS, ERRORS TEND TO 

OCCUR, 
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DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

HALSTED' S SoFTWARE Sc I ENCE METRIC: HALS TED ' S MEASURE 

HAS TENDED TO BE A GOOD PREDICTOR OF ERROR RATES IN 

SOME SOFTWARE PROJECTS. ROUTINELY CALCULATING IT AND 

RELATING IT TO ERROR RATES CAN.VALIDATE ITS USE IN YOUR 

ORGANIZATION, 

McCABE'S COMPLEXITY MEASURE: WHEN MCCABE' S MEASURE 

BECOMES GREATER THAN 10, THERE IS A STEP FUNCTION IN 

THE ERROR RATE (IN MANY STUDIES), IT CAN BE USED TO 

REGULATE MODULE SIZE (AS LONG AS IT IS NOT MISUSED) AND 

TO POINT TO ERROR-PRONE MODULES. 
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DESIGN ANALYSIS 

DESIGN ANALYSIS USING METRICS 

IMPROVED TESTING STRATEGIES CAN MAKE THE 

TESTING PROCESS MORE EFFECTIVE: 

ANALYZE SOFTWARE ARCHITECTURE 

(DESIGN ANALYSIS): 

MINIMAL TESTING ON CODE MOST OFTEN USED (LET 

ALPHA-TESTING CATCH MANY OF THESE ERRORS). 

MAXIMUM TESTING ON CODE WHICH IS DETERMINED 

TO BE CRITICAL TO THE OPERATION OF THE 

SOFTWARE AND .ON CODE WHICH ( THROUGH PROPER 

USE OF METRICS) HAS BEEN DETERMINED TO BE 

POTENTIALLY ERROR-PRONE. 

MINIMAL TESTING ON CODE WHICH IS NON-CRITICAL 

(ONLY USED BY "EXPERTS" DOING "NON-STANDARD" 

FUNCTIONS) OR (ONLY THERE TO HANDLE RARE, BUT 

NON-STRATEGIC "WHAT IF?" CONDITIONS), 
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DESIGN ANALYSI~ 

DESIGN ANALYSIS USING METRICS 

FORCE ERROR-PRONE MODULES TO BE RE-DESIGNED AND 
RE-PROGRAMMED! ON IMS, THEY FOUND THAT 20 % OF 

THE MODULES PRODUCED 80% OF THE APARS! 

REPROGRAMMING THEM EARLY-ON WOULD HAVE PRODUCED A 

SUBSTANTIAL SAVINGS TO THE OVER-ALL COST OF THE 

PRODUCT, 

WHEN A MODULE CONTAINS TOO MANY ERRORS, HAS A HIGH 

COMPLEXITY METRIC, HAS TOO MANY VIOLATIONS OF CODE 

QUALITY OR GOOD PROGRAMMING PRACTICE, OR IS HARO 

TO READ OR UNDERSTAND, IT SHOULD BE CLASSIFIED AS 

ERROR-PRONE AND BE RE-DESIGNED AND RE-PROGRAMMED, 
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MEASURES OF CODE QuALITY 

READABILITY IS MORE IMPORTANT THAN STRUCTURED PROGRAMMING 

CONSIDERATIONS 

PROPER PROGRAM ANO PROPER PROGRAM SEGMENTS 

SINGLE ENTRY/SINGLE EXIT 

• 

ALL CODE "REACHABLE" (NO "DEAD" CODE) 

ALL LOOPS "FINITE" (No "ETERNAL" LOOPS) 

MAINTAINABILITY 

(USE OF SMALL NUMBER OF PATTERNS AND STRUCTURES) 

. 3 BASIC STRUCTURES 

SIMPLE SEQUENCE 

ITERATION 

(00 WHILE STRUCTURE UNLESS USE OF OTHER STRUCTURES 

JUSTIFIED) 

SELECTION 

(CASE STRUCTURE UNLESS USE OF OTHER STRUCTURES 

JUSTIFIED) 

USE "CORRECT" STRUCTURE 

Do NOT BRANCH OUT OF LOOPS 

(8iJ... EXIT CONDITIONS SHOULD BE SPECIFIED IN THE BOOLEAN 

EXPRESS I ON OF THE WHILE STATEMENT. (NESTED) IF THEN 

ELSE'S SHOULD BE USED TO CREATE EXIT CONDITION,) 

Do THINGS IN THE "SAME WAY" AS MUCH AS POSSIBLE 

(US~ "VARIATIONS" ONLY W~~N JUSTIFIED BY SOME CRITERIA) 
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MEASURES OF CODE QUALITY 

COMPLEXITY 

No NESTED IF THEN ELSE 1 s 
(EXCEPT FOR SEQUENTIAL ERROR (OR OTHER TYPE) 

PROCESSING) 

USE CASE STRUCTURE (WITH DOCUMENTED BOOLEAN 

EXPRESSIONS) IN PLACE OF NESTED IF THEN ELSE I S FOR 

ALTERNATIVE PROCESSING) 

AFFIRMATIVE PROGRAMMING 

(TEST AND DEFINE ALL DEFAULT CONDITIONS. USE CASE STRUCTURE 

Q IN PLACE OF IF THEN ELSE'S) 

0 

ROBUSTNESS 

CODE SHOULD ALWAYS RUN TO COMPLETION 

AVOID USE OF REPEAT UNTIL STRUCTURE 

VALIDATE ALL INPUT DATA TO MODULE 

(BUT DO NOT CAUSE "RESTRICTIVE MODULES 11
) 

PROGRAMMER ASSUMPTIONS 

SEGMENT DEPENDENCIES 
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CONCLUSIONS 

THESE AREAS HAVE BEEN PRESENTED TO RAISE ISSUES RATHER 

THAN TO PRESENT ANSWERS, 

MORE RESEARCH NEEDS TO BE DONE IN THE TESTING AREA-­

ESPECIALLY AT THE SOFTWARE ARCHITECTURAL AND PRODUCT 

LEVELS. 

CODE QUALITY--IN TERMS OF "TESTABILITY" AND 

"MAINTAINABILITY"--SHOULD BE DESIGNED FOR AND INSISTED 

ON IN SOFTWARE DEVELOPMENT. 

BETTER DEFINITIONS NEED TO BE CREATED FOR TESTING AT 

THE SOFTWARE ARCHITECTURAL AND PRODUCT LEVELS, 

MORE AUTOMATED TOOLS NEED TO BE MADE AVAILABLE TO AID 

IN TESTING AT THE SOFTWARE ARCHITECTURAL AND PRODUCT 

LEVELS. 

TESTING SHOULD BE TAUGHT AS A DISCIPLINE--AN INTEGRAL 

PART OF COMPUTER SCIENCE--NOT AS AN AFTERTHOUGHT, BOTH 

IN THE UNIVERSITY AND IN INDUSTRY. 
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A REQUIREMENTS DRIVEN DESIGN APPROACH TO TEST PLANNING 

MACK ALFORD 
ASCENT LOGIC CORPORATION 
180 Rose Orchard Way, Suite 200 

San Jose, California 95134 

1. INTRODUCTION . 

With the imposition of MIL STD 2167 (and its revisions) on the software development process, a 
renewed interest has been placed on the issue of test planning for critical software. To ensure that 
end product software will have the required capabilities, there are now requirements to subject the 
software to systematic, thorough testing, and that the test plans and test procedures be documented 
in advance of software coding, and test results be documented when testing is completed. 

The purpose of this paper is to identify a current deficiency in the state of the art, i.e., the lack of a 
constructive method for deriving a test plan from requirements and design information; and to 
present a constructive test planning approach which exploits the content of the requirements/design 
information resulting from the use of ihe Requirements Dr,ven Design concepts which 
underly the Distributed Computing Design System (DCDS) [l]. · Section 2 will present a brief 
overview of the current state of the art of test planning, and *1ote SOJ11e of its deficiencies. Section 
3 then presents an overview of the Requirements Driven ·Design concepts which underly the DCDS 
methods and tools, and how the resulting information is used to constructively generate a test plan. 
Section 4 draws some conclusions from the discussion. 

2. AN OVERVIEW OF THE STATE OF THE ART 

MIL ~TD 2167 requir~s that test plans be written, and requires traceability from any test back to 
the requirements and design element tested. An overview of the required content of a test plan is 
presented in Section 2.1. Unfortunately, the method used to systematically identify tests is left to 
the ingenuity of the developer. Unlike requirements and design methods, where literally hundreds 
of software requirements/design methods have been published, there is a distinct lack of methods 
available for the construction of test plans. At best there is a test planning "folklore" of the kinds 
of testing that are needed to sufficiently exercise software. Some of the content of the folklore is 
discussed in Section 2.2 below. A discussion with software test professionals will yield the 
identification of perhaps two methods for test planning -- the document driven method, and the 
Deutsch method. The deficiencies of these methods are discussed in Sections 2.3 and 2.4. 

2.1 The 8 Dimensions of a Test Plan · ·· '."·· · · · · ._. ,: ~ ... :::<:~:: ~i: . .''}; . .: ,, ... 
A test plan identifies all of the tests to be perfonrted on the components_-ofthe' sqftwzjc: ·:bfie-:wii-f;,_,\<.,:'·t: 
to view a test plan is that it must specify 8 different aspects of each test and th#t u,:i~~l~JiAA~nip_s~ ~ ~-~ .~ .: 
A brief description of the 8 aspects is presented below. · · · ~. : ."i'.~~·;·,:s. :·': :,. · .'.':~: ·· '·c;·;:" .. ~:-- · · 

, ,, ~-. ~ 11 'l<,~.,_., r .. ,.. ,.r ~ "'· • 

1. requirement to be tested -- identifies which requirement frQtn the require~ti~:~~m~n.t. . · 
is being addressed. Note that the total of all tests shQu,ld;-~St·aU req~~nien~.f-~.t;,' ;,"-,~_,, ~' ': __ :\~_::'.·~,, 

2. software to be tested -- early software tests- usually ._exe_rcise .only a ·pp~9n:-bf :th'¢ ... · ,:-~ · 
software modules. This allows some programming and testing to be concll;t!CQ.t,:>:~gt :·:·.;_:J-:;'i.::' 

3. when the test is ·to occur -- this defines the preconditions for a test (e~g .. :,; .. ~~q~.~t~r,·. \.' .­
must have previously been successfully completed, .and the expected-date:": on.\Y.~ie~tij~J(l_i.~ 
test is to occur. The te~t plan should avoid a test plan with a strict sequence of teSts;f_.itY·~~ 
one test fails, and time will be required to fix the software before retest,.iji~ ~~ters -~. ;;· 
should be able to move on and execute other tests. · :·····. . ·· ·· · .· .:_.:,:-~,:~,; 

4. hardware required -- some early tests can be performed on the host piocessorvused ~:; ': .. 
develop the code (e.g., unit testing), while other testing requires·execution on·.:a.fully /\ .. , 'S 

.... •'' :·. 
:·, • - ... i• .... ~ 
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Populated distributed target processor. A strategy for moving from host to fully 
populated target architecture may have to take into account limited availability of (]).· 
hardware during early development, problems in scheduling the hardware for test, and 
take into account the inability to extract information from a target processor. 

5. kind of test -- this identifies a unit of software is to be tested with stubs for the 
procedures it calls, or whether the modules are to be included; whether the test is open 
loop with the environment, or whether a closed loop simulation of the environment is to 
be included; whether functionality and accuracy are being tested, or whether execution 
and/or response times are to be measured. 

6. support software required -- the support software varies according to test. Bottoms up 
unit testing requires some sort of scaffolding to insert data and extract and analyze the 
results; top down unit testing requires the generation of stubs; closed loop testing with 
the environment requires an environment simulator of some sort. Tests which verify 
some level of testing completeness measures (e.g., every branch or path for unit 
testing, every procedure called for integration testing) require some additional test tools 
to measure this completeness. This software must be specified, developed, and tested 
before it can be used to test the target software. Frequently, the specification and 
testing of environmental simulators may require larger development efforts than for 
development of the target software, and impose additional constraints on the availability 
of the target hardware. 

7. test case inputs and outputs -- sometimes a set of paths will first be tested with inputs 
·· from a small number of objects, and later tested with a maximum legal load set of 

inputs, and finally with inputs which are supposed to exercise the load-shedding or 
"graceful degradation" features of the software. Since different input scenarios may 
stress the software system at different points, any of several test cases may be executed 
by the software for a given test. The preparation of the different test case inputs may 
require substantial effort. Q 

8. original vs. regression test -- the criterion for passing an original test is that the outputs 
be within allowed tolerances of expected outputs. When modifications to the software 
are made, and results of some previous tests are not supposed to be affected, then a 
regression test is performed, where the acceptance criterion is that the test outputs of the 
modified software should match the previous outputs exactly. This occurs frequently 
when errors are corrected or capabilities are upgraded. A regression test can be totally 
automated (thereby taking less person time) but require substantial blocks of processor 
time. 

2.2 The Test Planning "Folklore" 
If one talks to a practitioner of software testing, one will discover that the state of the practice can 

. be loosely called "folklore". There are no well known methods in use compared to the state of the 
?.:tt:M ... .in. sof~are design, where many designers use one form of Data Flow diagrams or another. 
~.:a:Qyl~v:~. if one: ~ets in on a test plan review, one will discover that there is a well estabslished 

folkfore. o~ pie kinds of testing that must be done: 
· . • tfnit Testing - the tests of a unit of code without the lower level units that it uses or 

2~! ... _:_.L,/ .,"; c~s i. ~ ...... 
5 1fa r:; 1 ~!,M(?dule .t~stin"g'"·-tthe _tests of a unit of code which includes the lower level units that it 
~rlt c.',t.. :1-.uses"_<:,rcalls ·. . f.l 

: ·• lnterf,3-Ge testing - the tests of the interface mechanisms used by the software to 
• •••• c. commimicate with other system components (e.g., input/output, but no processing) 

ix.~<;: •· .•"~ad testing':' the te~ts of a "stimulus-to-response thread" of processing of the 
·.2,1· · ·J.,Y~:,software as~~ wpole, verifying that the input plus state yields the correct output plus 
irlJ c- J'.. :i: . · .state.J,tpda,tes. 

• functio1i'testing - the tests of a "function" of the software, to demonstrate that the 
·;. · ····software behaves correctly to the input of a sequence of items(e.g., testing the Q 

"tracking" function by insertion of multiple track returns) 

H2 



• 

0 

0 

0 

• object testing - the tests of the software demonstrating that a single object makes all of 
the required transitions between functions (e.g., demonstrating that an object is first 
detected. then tracked) 

• multi-object testing - the tests of the software to demonstrate that multiple objects are 
handled correctly, including some "load testing" to demonstrate that the software 
handles the required full load and has the required "graceful degradation" properties 
if more than the maximum load is input 

• exception testing - the test of the software to demonstrate that the software responds 
correctly to various "exceptions" (e.g., hardware exceptions, communications 
failures, algorithm failures) 

There are schools of thought on how the testing should be accomplished, sometimes resulting in 
heated discussions on the relative merits and disadvantages of different test strategies. For 
example: 

- every one agrees that the "big bang, ship on first normal termination" mode of testing, 
in which all modules are combined for the first time and tested, is insufficient to 
achieve anywhere near the desired software reliability. However; it is pointed out 
that the MILSTD 2167 requirements were developed as a protection against this 
kind of thinking. 

- the "bottoms up" school of testing states that the lowest level modules should be unit 
tested, then combined into higher level modules, and so on until the software as a 
whole can be tested. This method has admitted strengths (i.e., much of the lower 
level testing can be perfomed independently by many developers) and weaknesses 
(i.e., it is not until the highest level modules are merged that interface problems are 
detected. requiring substantial re-work and schedule slippages). 

- the "top down" school of testing states that one should first test the Job Control 
Language, then add the top level program module, and then add the modules one at 
a time from the top down. This has admitted advantages (i.e., interfaces are tested 
at the same time as the transformations during unit testing), but also admitted 
disadvantages (i.e., if the software is complex or large, it is difficult to find the 
particular set of inputs which will force a specific path 10 or 15 layers down in the 
subroutine hierarchy -- this has sometimes been referred to as "pushing with a 
rope"). 

- the "sideways in" school of testing, in which the top down and bottoms up methods 
are mixed together. 

Unfortunately, none of this discussion addresses the critical problem of how one identifies the 
tests. 

2.3 The Document Driven Method .- ,J· ~-

The document driven method of test planning is to take each paragraph of the requirements 
dC!cument an~ attempt to construct tests which woul~ de~onstrate the co~p}~?fi~e: ?f 'tt.1~~f~are 
with the requirements. There are several problems with this approach. · ·J • 

1 
..,,., : '· 

,.J(_ ~. t • ! I _.~ t 

First, the requirements documents paragraphs are usually not testable 3:s tll~y stahd~·- To address 
thie problem, the analysis phase of test planning extracts a set of "d.p_a'.!Jilitie,s'' :frOJJ1- the 
requirements document which are either explicit or implied. The test plan ~e~ ad_dresses the 
testing of these "capabilities". The definition of a "capability" is largely subjec!:ive._ .. ·. :. :·. ,1 • 

. ' l• l - • 

A second problem is that the usual mapping of requirements onto the design elemen~ fs expressed 
via a matrix or table of paragraph vs. design element. Analysis of such matrices ,dem~nstrate~ that 
the content of the traceability matrices is subject to a great deal of inletpre'tatjon -- thus the 

I • 
/' 
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identification of the modules of software necessary to test a specific requirement or capability may 
require a great deal of anlaysis. Q 
Finally, even if each requirement is associated with a specific subset of the design, the document 
driven method does not address the remainder of the critical test planning issues -- the strategy for 
combining and testing modules in a time sequence, the strategy for dealing with the host/target 
dichotomy, the requirements for the environmental simulator, etc. 

2.4 The Deutsch Method 
The method presented by Deutsch [2] is the first published approach known to the author to 
integrate the representation of requirements, design, and test planning. Figure 1 presents an 
overview of the approach. 

Requirements Design Design Thread 

A - 8 - 81- 8 -A - D • 01 
F1 

F2 A • 8 • 82 • 8 • A · D • D2 

F3 A-8-A-C 

TEST SCHEDULE· WEEKS 

UI D 1 

F7 BUI D 

FIGURE 1 - OVERVIEW OF DEUTSCH APPROACH 

Reduced to its basics, the method can be described as follows: 

0 

• express the requirements as a state machine; for each discrete function of the state machine, 
identify inputs and state condition, outputs and state transitions, and the traceability back to 
the requirements document paragraphs. This will also serve to uncover inconsistencies and 
incomplete requirements, and thus can serve as a verification method o 
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• when design is complete, identify for each discrete function of the state machine a "thread" of 
module invocations required to implement the function. This will also serve to "verify" the 
consistency and completeness of the design 

• for each thread, there should be one or more "tests" which will verify that the requirements 
are satisfied by the design elements on the thread. Construct a test plan by defining the 
sequence in which the threads are tested. It is recommended that the test plan use a top­
down threaded approach, i.e., top down but adding modules one at a time to achieve a 
given thread. 

• These threads should be combined into "builds" which are incrementally developed, tested, 
and released to the customer for early testing in order to reduce the risk of having 
incorrectly translated customer intent into operating software. 

For a compete description of the method, readers are encouraged to read [2]. 

The benefits of this approach are substantial. 
• it is constructive -- for each discrete function identified at the requirements level, a collection 

of design components are identified, and a specific test must be generated. 
• the ambiguities of the requirements document are isolated to the mapping onto the state 

machine; the mapping of the state machine to design and test is clean. 
• it lends itself easily to an incremental development approach, which reduces the risk of 

delivering the wrong product. 

Unfortunately, this approach also has a number of distinct limitations, listed below: 
• Because it is based on the model of a state machine for the requirements, it is subject to the 

limitations of state machines 
1) a state machine defines conditional sequences of actions, and does not allow the 

expression of concurrency -- this alone limits its application to embedded systems. 
Attempts to extend the state machine model to include concepts of concurrency destroy 
the underlying foundation of the model. For example, use of the state machine model to 
describe the behavior of 13 elevators which stop at 30 floors in response to buttons in 
each elevator and on each floor can become overwhelming. 

2) if a state machine description becomes larger than 50 to 100 states, its behavior becomes 
unwieldy to draw and very difficult to understand, because the state machine model does 
not provide the concept of a "hierarchy" to support a "divide and conquer" strategy. 
Again, refer to the elevator problem. 

3) if a discrete function (i.e., node of the state machine graph) becomes too complex, it 
cannot be simply characterized by its outputs and state updates. For example, if one 
input can yield some combination of outputs and state updates from 6 concurrent 
decisions, each of which has 3 choices, then the "thread" might not be the correct level of 
requirement to drive the testing process (e.g., see [l]). A better unit of requirement 
might be the "path" resulting from one of the concurrent decisions - it is easier to test 15 
paths than it is to test (3x3x3x3x3x3 = 729) threads. 

4) some non-functional requirements are not directly associated with any thread of 
processing (e.g., safety requirements), and others are not even visible at the requirements 
level (e.g., if the hardware selected is subject to frequent parity errors, the software may 
have a feature to checkpoint and restart the software on detection of a parity error in a 
way which is transparent to the overall input/ouput level of processing). 

• There is an implicit assumption that the target software architecture is that of a program, 
rather than a set of concurrent tasks needed for a real time implementation. 

• Deutsch recommends a pure top down approach. It is not clear that a sideways in kind of 
approach might not be better for large complex software. 

• No approach for developing the environmental simulator is provided. 
• No approach for dividing up the testing between host processor and target processor is 

provided. 

H5 



• The approach is not currently supported by commercially available tools, which could reduce 
substantially the effort required to use it on larger projects. Q 

Thus the Deutsch approach provides some substantial advantages over the document driven 
method, but is subject to a number of limitations which hamper its application to larger projects. 

2.5 Discussion 
It appears that the lack of a constructive test planning approach can be traced back to the 
deficiencies of the models used to describe requirements and design. The document driven model 
is subject to the deficiencies of requirements specified in textual form. The Deutsch model is 
subject to the deficiencies of the state machine for the statement of requirements. Thus the search 
for a constructive test planning approach must start with a more robust representation of 
requirements and design. 

3.0 A CONSTRUCTIVE REQUIREMENTS DRIVEN APPROACH 

The constructive approach to test planning presented below is a logical consequence of using the 
methods of representing requirements and design described in [1], which can be summarized a 
Requirements Driven Design. The discussion starts with an overview of the methods for 
representing requirements, how designs are represented, and finally how the test planning 
approach takes advantage of this information. Figure 2 presents a cartoon overview of the 
approach similar to that of Figure 1. 

3.1 The Requirements Model 
The essence of the Requirements Driven Design approach to the representation of requirements is 
as follows: first define the desired system behavior; then decompose this desired behavior and 
allocate the functions onto the design elements; and finally add functions to detect and recover from 
exceptions. This can occur at a number of levels of design: allocation of system level functions Q 
between the environment and a black box system; allocation of black box system functions to 
components or subsystems (e.g., a data processor subsystem); allocation of data processing 
functions onto software design elements; or decomposition and allocation of an algorithm to units 
of code which will implement it. In this paper, we will focus on the problem of representing data 
processor level requirements and allocating them onto design elements. 

The basic building block of the description is the discrete function which accepts a discrete 
input, generates one or more discrete outputs (including state information), and transitions to a 
new state to receive the next input. When a number of discrete functions are connected by a graph 
which defines conditional sequencing, you have by definition a state machine. This part of the 
technology is not new -- a number of different researchers use the concept of state machines in 
order to represent sequencing conditions (e.g., to represent communication protocols, to represent 
actions of robots, and even to describe sequencing conditions in some data flow 
requirements/design approaches). This part of the representation method is essentially the same as 
that of Deutsch. 

To overcome the limitations of the state machine model, the Requirements Driven Design approach 
provides the ability to aggregate a graph of discrete functions into a new (larger?) building block 
called the time function. By definition, a time function accepts a structure of inputs over some 
finite period of time, and generates some structure of outputs during that period of time, until some 
completion condition is satisfied. In the same manner, a sequence of inputs or outputs can be 
aggregated into a new (larger?) building block called an item stream. Much larger behaviors can 
then be represented using graphs whose nodes are time functions which input and output item 
streams. Graphs of time functions can be further aggregated into higher level time functions, to an 
arbitrary number of levels. 

H6 

0 

.. 



.. 

0 

0 

0 

In addition to representing conditional sequences of functions, the Requirements Driven Design 
graphs provide the ability to represent various types of concurrency of functions and/or items: 

• concurrent interleaved streams of input items, specifying both partial sequencing and 
concurrency (e.g., input from each user arrive in sequence, but may be arbitrarily 
interleaved between users) 

• independent concurrent functions, with no interactions -- this provides the ability to define 
independent state machines 

• interdependent concurrent functions, requiring coordination -- this provides the ability to 
describe the desired behavior of concurrent state machines with constraints 

• replicated concurrent functions, requiring coordination (e.g., processing inputs from a 
number of users) -- this provides the ability to describe the behavior of many identical 
concurrent state machines with constraints 

Such graphs of items and functions can be used to express arbitrarily complex system behaviors in 
a hierarchical manner which are more understandable than if the behavior was represented at a state 
machine. For example, the behavior of a set of elevators would be described as the behavior of 
replicated elevators, where each elevator responded to its button inputs and inputs from a 
coordination function. 

If data processing functions are being described, and the discrete functions are complex, then they 
can be further decomposed into a stimulus-response level of description. Figure 2 indicates that a 
function has been decomposed to a stimulus-response description. The paths can be mapped 
directly onto a task, or the stimulus-response can be subdivided and mapped onto multiple paths if 
needed to satisfy response time requirements. 

In short, the Requirements Driven Design requirements approach provides mechanisms for 
overcoming the basic limitations of the Deutsch requirements model: 

• explicit representation of concurrency, including replications of identical functions 
• explicit representation of decomposition to provide a hierarchy of functions for complex 

problems 
• explicit decomposition of a complex discrete function into a stimulus-response 

representation of the concurrent paths of processing 
• explicit representation of functions allocated to the environment or other subsystems, thus 

providing the definition of the transformation to be implemented by 
simulators for closed loop testing. 

3.2 The Design Model 
The Requirements Driven Design approach to design is to explicitly allocate required processing 
and data onto design elements. Three kinds of design elements are used: 

• Modules, which are decomposed into algorithms which accomplish the specified 
transformations 
• Tasks, i.e., logically concurrent units of code, whose executions are serialized by 
the operating system scheduler; and 
• Data objects, i.e., object which encapsulate state data 

Module Definition 
When the discrete functions of the required processing are decomposed down to the stimulus­
response level, the nodes of the graphs represent memoryless transforms (called ALPHAs in the 
terminology of SREM) with known data input and output. These transforms can be allocated to 
Modules. The Module required input and output data are allocated to variables in a programming 
language. Algorithms are developed in the usual top down fashion to accomplish these required 
transformations. In Figure 2, the module decomposition is displayed in a fashion similar to that of 
Figure 1. 
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FIGURE 2 - OVERVIEW OF ROD APPROACH 

Task Definition 
This phase of design addresses the problem of mapping the required processing onto the tasks, 

i.e., the units of code scheduled by the operating system. If there is only a single task, then all of 
the concurrency exposed in the requirements would have to be serialized into a single program. 
This could certainly be done, but then the programmer would have to generate the code which polls 
the input lines periodically and call procedures to handle the inputs in a manner which ensured that 
the required processing load could be sustained. If tasking constructs are available at either the 
coding language level (e.g.tasks in C or Ada), the the run time system can provide the (reusable!) 
code to perform the serialization of the concurrency in a flexible fashion. Figure 2 illustrates that 
required processing has been mapped onto tasks, and that one of the tasks uses a module which is 
decomposed into a hierarchy of modules. 
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Data Obiect Definition 
Just as processing must be allocated to tasks, state information must be allocated to data objects. 
In this context, a data object is defined as a combination of data structures and methods used by 
other processing elements to create, access, manipulate, update, and destroy data contents in the 
data structure. Recall that Booch [3] describes the defining characteristic of an object as an entity 
which encapsulates state information. Since the requirements portion of the Requirements Driven 
Design approach defines all of the required sequencing of the system and thus all of the state 
information required to support that sequencing, then without loss of generality, any object 
oriented design can be described in terms of allocation of required state information onto data 
objects. Note that in Figure 2 the state information has been allocated onto a data object with two 
methods - one for insertion, and one for extraction. A buffer linking Tasks 1 and 2 is just a 
standard predefined data object. 

Fault Detection and Recovery 
After the required processing has been allocated to the design objects, a Failure Modes Effects 
Analysis is carried out to identify potential faults, and identify the impact of those faults on the 
overall operation of the software. If it is decided to deal with a fault, functions may be added to 
detect and recover from the fault. These functions may then be decomposed and allocated onto 
design elements in order to complete the design. Thus there is a systematic method for identifying 
and implementing the design decisions which address the non-functional requirements (e.g., 
safety, availability, reliability, resource constraints). 

The Mappin2 of Reguirements to Desi2n 
The above mappings of required processing and data onto design elements is made in a fashion 
which explicitly preserves both the required sequencing and the data flow of the requirements. 
This means that any path of processing in the requirements will map into some sequence of task 
and module invocations in the design, as depicted on the right hand side of Figure 2. Similarly, 
any sequence of time functions in the requirements will be decomposed and allocated onto a set of 
tasks, modules, and data objects which implement it. Thus the effort required by the Deutsch 
approach for finding the mapping from discrete functions in the requirements onto a design thread 
is eliminated because of the method of constructing the design using the Requirements Driven 
Design approach. · 

3.3 The Test Planning Approach 
Now we reap what has been planted during the requirements/design phases of development. 
Following the discussion in Section 2, one can simply read off of the diagrams all of the tests 
which are performed in the state of the practice: 

• Unit level tests are obvious -- they apply to each of the modules and tasks. 
• Module integration tests can be performed meaningfully at the top module level, at the 

level where a task incorporates its modules, and for all of the methods supporting a 
specific data object 

• Path and thread tests are equally obvious. For every path of the requirements there is a 
corresponding path of task and module invocations, as depicted on the right hand side 
of Figure 2. Thus the path (or, in simple cases, the thread) serves the same purpose 
as the basic unit of integration testing for this approach as the thread served as the 
basic unit of test planning for the Deutsch approach. 

• The function tests, in which a time function accepts a time sequence of inputs, can be 
associated with each time function. 

• The single object tests must test each of the state transitions (or paths of state 
transitions) identified in the graph of functions. This must occur for all of the state 
transitions for each object (e.g., see Figure 2). 

• The multiple object tests will force all of the state transitions in the coordination 
function. 
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• The exception testing tests all of the branches of processing which were added to detect 
and recover from the exceptions identified during the latter stages of the design phase. 

The following strategy for test sequencing is suggested: 

1) Modules which perform the required transformations, and methods used to access each 
of the data objects can be tested either top down or bottoms up, according to the 
preferences of the testers. 

2) Modules and data objects can be tested concurrently with the top down testing of the 
tasks. These test should be performed first on the host, where a friendly, debugging 
environment exists, and then moved to the target machine where the testing is repeated. 

3) To test the tasks on the host, a special test tool called a Functional Operating System 
(FOS) will be required. The FOS is a program on the Host machine which provides all 
of the operating system services supplied by the target operating system. 

4) The final load tests will have to be performed on the Target architecture only, as the Host 
processor does not usually have the capacity to perlorm them. 

5) Increments are defined for development. Each increment will go through the same 
sequence of module and task development on the host, integration testing on first the 
host and then the target architecture. The definition of the increments must trade off 
two points of view: do first things first, so as to minimize the required scaffolding 
software; and early resolution of the critical issues (e.g., if track processing has been 
identified as risky, then it should be done early so there is ti.me to fix it if needed). 

It is noted that the methods described above can be used effectively as a requirements/design 
verification and validation method for software not developed using the Requirements Driven 
Design approach. This is a consequence of the fact that the methods describe invariants of the 

0 

system (i.e., behavior which must be satisfied regardless of design implementation, and allocation Q 
of required processing and data onto design elements). In fact, it is recommended that the 
Requirements Driven Design methods and tools be used in an Verification role previous to first use 
as the requirements/design methods for a critical software project in order for the personnel to gain 
confidence in the methods and tools. 

4.0 CONCLUSIONS 

It would not be totally unfair to characterize the approach presented above as merely: 
• adapting the approach documented by Deutsch to apply to an improved requirements/design 

model, and thus to eliminate its deficiencies; 
• extending the approach to address host/target testing problems; and 
• incorporating the "folklore" from the state of the practice. 

All of the deficiencies of the Deutsch method identified in Section 2.4 have been addressed except 
one -- the lack of tools. The methods described above are currently supported by tools. The 
DCDS tools developed by TRW under contract to the U.S. Army capture the requirements/design 
information, and perform substantial consistency/completeness analysis on this information. A 
Test Specification Language is used to document the information developed using the methods 
described above. A second set of tools to support this approach is currently in development at the 
Ascent Logic Corporation. Readers desiring more information about these tools should 
contact the author. 

The expected results of using the methods described above are substantial. First, the process of 
defining a test plan traceable to requirements and design is now constructive (i.e., paths of the 
system behavior graphs are mapped onto tests) and understandable, rather than the product of 
"black art". Second, use of the methods are expected to increase productivity (i.e., the current Q 
effort to extract thread and object test cases from the requirements will be eliminated). 
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E. Uren, E. Miller, J. Irwin 
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San Francisco, CA 94107-1997 

Abstract: Typical Software Research projects are 
described and numerical results from these pro­
jects are given. Levels of productivity are very 
high provided that a significant level of mechani­
zation can be obtained. SR's use of specialized. 
software tools is described in detail. 

Confidentiality Note: We have to keep the names 
of clients confidential - this is often a main 
condition of our work - and have disguised the 
project summaries extensively. However, in all 
cases the statistics and the effort levels are 
reported accurately, as is the general type of 
product. 

JllDODDCTIOII 

We have found four major patterns in the work we 
are called on to do for clients at the ''hi-tech" 
end of our business. The patterns repeat often 
enough that we think it will be interesting to 
current and potential clients to see what the 
numbers are, so that they can compare themselves 
with others • 

In addition to these patterns, there is substan­
tial common ground across these project types. 

The typical situation is that a vendor has a pro­
duct such as a compiler or operating system under 
development. The vendor is interested both in 
detecting errors in the current release or version 
of the product and in having a procedure for 
detecting errors. The procedure should be mechan­
ized and should be as simple as pos~ible so that 
when errors are repaired, the entire product may 
be retested economically, (this latter procedure 
is called regression). This will enable the user 
to verify that the errors have indeed been 
corrected and that no new errors have been intro­
duced duri~the repair process. 

To detect the errors, a test suite is constructed 
and since the customer is very eager to see the 
results of the testing the customer expects the 
test suite to be applied to the product under 
study during development of the suite itself. 
Typically, SR will agree to do this and also to 
accomodate their eagerness, SR usually sets up 
electronic mail so that they may get "instant 
access" to the latest "news " about tests applied 
~no erroro oece~ced, 

Development of the mechanized procedure for run­
ning the test suites was considered to be a pro­
cess which was unique to each project because 
environments and test objects appear, at first 
glance, to be so different. However, as experience 
with the projects increased, however, it became 
clear that a general purpose tool could (and 
should) be constructed. 

Project Classes 

~ ~ Development: In this category, our 
purpose is to build the customer a suite for a 
fixed product. In early discussions with the 
potential customer, a decision is usually made 
whether there should be full validation or whether 
a touch test suite will suffice. A touch test 
suite consists of a set of programs that collec­
tively exercise all language at least once. 
Smaller than a full validation suite, it is also 
far cheaper. It is a compromise between size and 
required complexity (that one might expect in a 
full validation), and thoroughness. 

Comprehensive Product Testing: In this category, 
the purpose is to build and apply a complicated 
mechanized set of tests. The thrust of these pro­
jects is to develop a set of tests which provide 
as complete functional coverage as possible of the 
product under test. Since the product tends to be 
complex, the advantages of mechanizing the process 
of applying the tests become more significant. 
Consequently, there is considerable effort devoted 
to constructing the mechanical methods of applica­
tion. The mechanization process goes hand-in-hand 
with organizing the tests themselves. This organ­
ization in and of itself proves to be a very 
powerful tool for analysis of the weak and strong 
components of the product. Generally, the group­
ing of individual test cases in the suite is 
oriented towards major functions of the product, 
and an accumulation of failed test cases in a 
group will provide a clue to product developers as 
to how to repair the errors so detected. 

Detailed Technical Testing: In this category, we 
classify compiler or operating system testing. 
Compilers and operating systems are the foundation 
upon which which most development work is con­
structed. Typically, they are widely distributed 
with the computer hardware, and probably to most 
programmers, are seen as part of a complete pack-
age which happen! to comprise both hardwar@ and 
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software. The acceptance of the hardware by the 
user is indeed "masked" by the "appearance" and 
performance of the software. Consequently, the 
vendor considers it crucial to be as fully 
informed as possible about what these systems can 
and can not do. 

Validation Testing: In this category, we have 
another type of critical product. Some software 
products have a particularly important dimension 
of criticality since they control medical devices 
which themselves have important impact on the 
management of health care. They can be of dif­
ferent orders of complexity. At various levels, 
they provide data used to analyze an individual's 
state of health and treatment can be prescribed on 
the basis of results of these systems. Not only 
do these systems affect human life and the quality 
of human life, they are also subject to regulation 
by the Feder a 1 Government and they operate in a 
domain wherein liability assumes a greater and 
greater importance. 

Enviroaaeat Te•t Suite 

Under contract to a foreign company, which was in 
turn under contract to a (foreign) government 
agency, SR developed a comprehensive validation 
suite for substantial extensions to the Unix Sys­
tem V validation suite. This test suite was the 
first to address validation of an environment, and 
was targeted to an environment designed for port­
able common tools. 

SR developed the following during about 4 effort­
months: 

- 157 self-checking test programs. 
- 471 tests of 175 commands, calls, drivers and 

functions. 
- Special control program. 

The special control program, in addition to exe­
cuting the tests, reports incrementally on the 
progress of a group of tests in terms of the 
pass/fail ratio. 

SR provided onsite installation support. 

The initial application uncovered 24 errors. 

PL/I Touch Teat Suite Dewelopaent 

SR developed a touch test suite for the LPI/PL-1 
subset G compiler for a major US vendor. This 
suite tests 204 features of the language. The 
touch test suite consists of 11,167 lines of PL/I 
code in 165 programs (and two auxiliary files for 
one of the programs), 26 scripts, two automated 
test scripts and 164 baseline files which have 
been validated manually. 

Included in the suite (but not necessary for 
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"functional coverage") were 8 programs from a 
widely available PL/I G-subset textbook. 

An important feature of the suite was that it was 
set under SMARTS control (Software Maintenance and 
Regression System -see Reference 2), so that 
regression could be just about as automatic as one 
wished using the two automated test scripts. This 
is the generalized regression control system 
referred to previously. The package also included 
scripts to simplify compiling, loading and execut­
ing the test cases should one not wish to use 
SMARTS. 

The programs in the test suite were not self­
checking. Instead, SR used another approach. 
First, all the test output results were accumu­
lated in ''baseline" files. Then SR validated the 
contents of the files to ensure that the contents 
were correct for the test object in its current 
state of development. Thus while most of the out­
put was correct because the test object had no 
errors, in some (perhaps many) instances, the test 
results were.the results of errors. This output 
was still incorporated into the baseline files. 
Output from subsequent executions of the test 
suite during regression could then be compared 
with the baseline files quite simply using "diff". 
Clearly, any differences reflected changes ·in 
behavior of the test object, which is exactly what 
the tester was looking for in a regression situa­
tion. The goal of the regression test is that 
correct output remain unchanged and incorrect out­
put be changed, presumably for the better. Under 
SMARTS, this is always the approach taken. 

During development of the •uite, SR discovered 
thirty-one problems serious enough to warrant 
reporting in formal error report•. The cost of 
dis~overy of each error was $500 alone, IGNORING 
the fact that a test suite, a set of baseline 
cases and a regression system were delivered. 

h•embler Teat Suite and Control Progr-

In this project for a major US vendor, the purpose 
was to develop both a comprehensive test suite for 
a new macro assembler and an automated way to 
apply it, and also to apply the suite to the 
assembler using the automated procedure. The 
automated procedure was to allow the user to 
''browse" through the test set, run individual 
tests or groups of tests, compare results of runs 
with previous results, and maintain statistics. 

610 test programs were developed and applied, 
detecting 160 defects. After the client made some 
revisions to the macro assembler, the tests were 
re-applied. 

The automated procedure developed in this project 
can be used in other regression situations on 
other projects. Thus the client has, as a by­
product, a new universal tool for regression. 
Should the client develop another product which 
requires regression, it is only necessary to· 
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define the atrueture of the test• in a control 
file, construct the tests and validate the output 
of the first application in what are called base­
line files. 

From SR'• point of view, development of the 
automated procedure led SR to completely general­
ize the process of automated control and produce 
the SMARTS package. SR had developed so many con­
trol programs from scratch that the need was evi­
dent. The general purpo•e qualities of this pro­
gram were the final step. 

To develop the tests and the regression system 
took one effort-year. The regression system con­
tains 5,400 lines of control file. 

System Test Mechanization Project 

A major portion of this project was to develop an 
automated regression system for a client with a 
quite large , extremely sophist i eated, highly 
user-interactive, product. The product runs on 
Sun workstations and was designed using object­
oriented principles. Interaction with the system 
used a keyboard as one might expect, but far more 
emphasis and use was focussed on the use of a 
mouse. The client had invested substantially 
(more than 8 figures) in developing the system. 
There have been many releases and a few versions 
have been in beta-teat for about a year. 

Working with the client's programming staff, SR 
developed a system, integrated into the client's 
program, which captured key~strokes and mouse 
movements. Tests may be captured during their 
first application and played back. This together 
with the regression system allows the client to 
automate most of the testing procedure. 

Thus the client has an accurate detailed record of 
what functions the test performed, and there is 
also a procedure for modifying these test playback 
files so that test variants may be constructed 
economically. Performed under control of the 
regression system, SMARTS, comparisons with the 
results of prior tests may be made and statistics 
maintained. 

SR developed 210 tests in the process. There were 
about 650 sub-tests included. In the process of 
constructing and applying the tests, SR discovered 
22 errors. 

Unix Syatea Testing 

The purpose of this project was to apply previ­
ously constructed touch tests for Unix utilities, 
to extend touch tests for the system interface, 
construct library function tests and to develop 
and apply tests to assess the computer's kernel-
hV~l IUbility. 

The client was a major U.S. computer manufacturer 
whose new computer model was at about the final 
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stages of hardware testing. 

To assess the computer's kernel-level stability, 
SR developed a suite of self-cheeking tests of 
CPU, memory, disk I/0, serial communications and a 
CapBak(tm) session simulating a "typical" terminal 
user. The tests in the stability teat suite were 
parameterized as to size and could be executed in 
different mixes. Thus instability in terms of 
test failure or degraded response time was 
observed in terms of the size and mix of the load 
on the machine. 

There were 141 tests of utility functions testing 
665 switches and combinations of 195 Unix base 
commands, 66 tests of the system interface (with 
182 sub-tests) and 87 tests of library functions 
(with 150 sub-tests). Fifty-one anomalies were 
detected of which thirty-one proved to be errors 
in the software. 

The stability tests consisted of load tests for 
the CPU, Disk, communication channel, keyboard and 
memory. These parameterized tests could be run 
independently or as a mixture. Test run times 
ranged from 8 seconds through 37 hours. Five 
anomalies were detected in this portion. 

The control program for the stability tests con­
tained enough general characteristics to be con­
sidered the "seed" for SMAR7S. 

Xenix Toacb Testing 

Xenix V Software Syst- Test Project 

The purpose of this project, for a large U.S. 
computer manufacturer, was to validate the opera­
tion of Xenix Von a variety of the manufacturer's 
machines. The test suite developed was to be 
applied to a number and variety of machines in 
single-user mode, linked together, and to dif­
ferent versions of the operating system. 

SR developed touch tests for all XENIX utilities 
including base commands, software development sys­
tem commands, and text processing commands. SR 
also planned and developed full validation tests 
for the following software device drivers: 

Memory Managment Unit 
80287 Co-processor 
CPU 
Serial Port (including Multiport) 
Parallel Port, 
Console 
Clock 
Timer 

The statistics for these tests were too voluminous 
the1J1Selves for this document. Suffice to say there 
were considerably more than 1000 tests. Another 
point to note is that this project was the last 
that SK had do without th@ benefit of @ith@r 1 
control program or a regression system. The lack 
of mechanization meant that running the tests and 
documenting them accurately consumed substantial 
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manual resources. 

SR detected 94 errors in the first application of 
the tests and 50 in the first of three regres­
sions. 

V.&LIDATIOR 'IZSrlIG 

Patient Der:a Hanageaent Sysr:ea QC 

The purpose of this project was to test a system 
which permitted medical patients to accumulate 
periodic readings of certain biological variables 
without visiting a medical facility. The patient 
used a portable recording device for this. At 
fairly regular intervals, the patients' records 
could be offloaded to a personal computer software 
system for analysis and storage. The client was a 
major US supplier of medical equipment. SR 
developed a system for maintaining the system 
under strict configuration control; and developed 
a system for testing new releases thoroughly and 
economically before distribution to the client's 
customers. Thus a new release must proceed both 
under careful configuration control and under 
examination under the same teat situations as pre­
vious versions. 

To accomplish this, SR developed a set of teats 
under automatic keystroke capture and playback 
conditions (using SR's CapBak(tm) system - Refer­
ence 1), developed a further set of functional 
tests, established a Software Incident Reporting 
System for tracking errors, placed master copies 
of the code under Unix SCCS control and systema­
tized procedures for making changes to the code 
smoothly, SR performed detailed coverage analysis 
on each version of the code using the automated 
test suite to ensure that the test suite tested 
the code thoroughly. A variety of errors and 
anomalies were discovered and repaired as part of 
the project effort. 

Quality Contro 1 Printer Testing 

This client was under contract to a major U.S. 
medical equipment supplier to produce hardware and 
software which would permit the use of a printer 
as a Quality Control device by producing reports 
derived from data accumulated in some medical 
equipment. This medical equipment ·is, ultimately, 
the equipment whose operation needs to be checked 
periodically. When not performing this function, 
the printer would serve as a printer. 

SR's task was to test the software which checked 
the operation of the medical equipment. SR teated 
it in a number of ways. 

First, SR performed a formal inspection and review 
of the code, finding 71 anomalies at the modular 
level and 65 at the system level. Second, it 
developed a set of 38 functional tests which were 
applied to instrumented versions of the code com­
piled on a PC and determined that the coverage 
levels reached very high levels for both branch 
coverage and system coverage. SR used TCAT./C and 
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STCAT/C (References 3 and 4), another set of stan­
dard tools for this step of coverage analysis. 

Third SR produced another 27 tests and modified 
the original 38 to have increaaed numbers of read­
ings. This process required that SR also develop 
a method for generating test cases. 

Fourth, SR developed a validation system for test 
cases. This system consisted of three parts. One 
part used the same input as the code under test 
and computed results and the coordinates of where 
the results should be plotted on graphs which 
could be part of the output. Another part 
extracted the results of the test code's output 
and presented this data in the same format as the 
first program's output. A third program could 
compare the output of the first two parts. That 
this process worked correctly was formally vali­
dated on the output of a sample. 

Next, SR placed the test suite under SMARTS con­
trol for regression purposes. Regression could 
not be as automatic as one would like due to fact 
that the code under test, requires that switches 
be set and a button pushed before the code exe­
cutes using the data. Nevertheless, the baseline 
cases were validated. 

Finally, SR applied the test cases to two releases 
of the software. 

Another twenty-two error reports were written; 14 
of these were judged serious. 

By the end of the project, the defect rate on the 
latest version was 11 or about 4/'ll.OC. Of these 
11, about 5 were still serious or 2/KLOC. Thus, 
the complete error detection process reduced the 
error detection rate by a decimal order of magni­
tude. 
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EXPERT SYSTEM VALIDATION : ISSUES AND 
APPROACHES 

Edward F. Miller 
Software Research, Inc 

625 Third Street 
San Francisco, California 94107-1997 

USA 
Tel. : (1) 415 957 1441 

Abstract : As expert system (ESs) technology matures, and as more and more 
ES software appears on the market, the time to ask hard questions comes nearer 
and nearer : What about the quality of an ES ? How does one know that the result 
produced by an ES is correct ? What indications are there that an ES might be 
giving incorrect information ? What can make an ES fail ? What can be done to 
certify ES software ? 
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PARALLELS WITH THE PAST 

There can be little doubt that ES's represent a tremendous advance in software 
technology. The ES approach, combined with the unique set of applications of 
ES's - which have very great technical appeal - virtually assures that the 1990's will 
be an ES decade. There are, however, close parallels between the current 
situation in ES technology and the early 1970's love-affair with software 
engineering (SE). Many of the rosy promises that were being made by SE 
technologists of that era concerning formal validation procedures (to take one 
example) have a resonant similarity with some of the promises - and expectations­
of ES technologists of today (Ref 1,2). 

Great difficulty can ensue if the ES community too quickly concludes that ability 
to build a system that appears to have quality behavior on a few cases means that it 
will have quality behavior in all instances. 

FAILURE MODE ANALYSIS 

Here is a preliminary analysis of the possible failure modes in an ES. Software 
Research's (SR's) approach to ES validation (ESV) is described (Ref. 4). 

o Incorrect user Input ("PIiot Error") : The user thinks he said X and he 
really said Y : he believes the opposite but he is wrong. The ES-produced answer 
is wrong not because of a fault in it but because of a fault or inconsistency on the 
part of the user. 

Full validation of the user's input state is the solution, but the overhead for this 
computation - let alone what is involved in it - is not well understood. 

SR's ESV method : little possible protection, except for careful user testing 
for resistance to error inputs. SR's early experiments indicate that the use of 
mechanically generated test suites, combined with an automated session driver 
(i.e. the equivalent of a software test bed), is effective. 

o Incorrect rule In the ruleset : In this case the ·expert~ has declared an 
incorrect fact - probably an intermediate one - and doesn't know it. The ES works 
correctly but gives the wrong (but 100% self-consistent) answer. The problem is, 
the rule is invalid with respect to ·outside real-world truth". 

SR's ESV method : development of suites of automated test sessions 
generate, as much as possible, one each of every possible equivalence class of 
output result. Our early experience suggests that, with care in choosing limit and 
unusual cases, the most common access to an (the original ?) expert is essential to 
create the ES test baseline. 

o Incorrectly stated rule In ruleset : Here there are three cases : missing 
rule, extra rule, and wrong rule. Coverage analysis (percent of rules touched) can 
detect most of the wrong rule cases. If the input state sequences are sophisticated 
enough, they can also detect 50%-70% of the missing rule cases. Extra rules are 
noted by their non-use after coverage checking. 

Preliminary estimates suggest life-cycle defect rates in the range 20/kAules to 
30/KRules. 

SR's ESV method : Measurement of the LAI (Logical Rule) for popular ES 
languages such as Lisp or Prolog appears to be straightforward, although some 
coercion of certain interactive features is sometimes problematical. Some rufeset 
bugs are very difficult to find and careful inspection methods must be used. 



0 

0 

0 

o Rule reduction problem : The error is in the ES shell or other system 
software component. Conventional rules of SE production apply : 50 
defects/KLOC, detectable inspection, functional test, and structural (unit and 
system level) test. 

SR's ESV method : Use conventional convergence testing methods based 
on comprehensive functional and structural exercise, but only if the source 
versions of the ES system component is available. In the future, SR advocates 
using standardized test suites for the popular logic programming languages. 

o Validation of outputs : The issue is similar to that in proving complex 
programs - ones with many and complex paths, not necessarily those with many 
levels necessary to check that combinations are tried. But combinatorics prevents 
this unless ways to factor rulesets along structural lines can be found. 

SR's ESV method : SR estimates that about a 100:1 reduction in overall 
path-oriented complexity is possible by linearizing methods. How to accomplish full 
validation for a complex, real-world system is not fully understood. Preliminary 
application of SR's MetaTest system suggests there is some hope of unraveling 
the logic flows and factoring them efficiently. 

COMMERCIAL ES VALIDATION SERVICE {ESVS) 

Many modem approaches to conventional software testing are nearly directly 
applicable to ES quality certification. The parallel:.; have permitted release of SR's 
new Expert System Validation/Testing Service, based in part on use of 
advanced software validation methods. 

SR's CapBak(tm) session capture and playback software, combined with the 
SMART regression test system, allow each ES test case to be run, with test results 
comparaison, nearly 1 00% automatically. Regression testing is fully automatic. 

The completeness of the tests can be assessed with SR's new TCAT/Llsp 
and TCAT/Prolog test completeness assessor systems. (SR's new ES test tools 
will be available in late 1987). 

The costs of SE validation services (SEYS) are $15K-$30k/KLOC. Because of 
the increased complexity and subtleness of the defects, ESYS costs are presently 
over $1 00K/Krules. After SR gains further experience. we estimate the costs to be 
in the $65K-$85K/KRule. 

SUMMARY 

From the QC perspective and from the experience of applying effective QC 
methods to a wide range of sottware, ESs are, ultimately, built out of software - the 
same kind of software with which we are all generally familiar. While ESVS costs are 
significantly higher than for SEYS, they clearly indicate ESYS' viability. 
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