QUALITY WEEK May 1988

ADVANCED SOFTWARE TEST METHODS

Detailed Notes anad Viewgraphs

Presented By:

Dr. Edward F. Miller, Jr.

May 11, 1988
. Prepared For Presentation At:
-

QUALITY WEEK
Marriott Fisherman’s Wharf
San Francisco, California

SR Job No. 1107

(c) Copyright 1988 by Software Research, Inc.

ALL RIGHTS RESERVED. No part of this document may be
repraduced in any form, by photostat, microfilm, retrieval
system, or by any other

means now known or hereafter invented
without written permission of Software Research, Inc.

Software Research, Inc.
625 Third Street
San Francisco, CA 94107-1997 USA
Phone: (415) 957-1441 -— Telex:

340-235 ~- Fax: (415) 957-0730

SﬁftwargaRgsearbb? Inc. San Francisco, California

PRINCIPLES OF TESTING _ QAT-10-1

MOTIVATIONS FOR
SOFTWARE QUALITY ASSURANCE

o EFFECTIVE UTILITY
. » Does a software system do what it is supposed to do?
* Does it not do what it's not supposed to do?
* What are its actual properties?

o JUDGEMENT REQUIRED FOR QUALITY

o PERSPECTIVE OF OPINION MAKER (JUDGE)
+ Software expert
= Suftware user (Engineer)
« Public user
= Public non-user

o WHAT IS THE COST OF A SOFTWARE ERROR?
i « Direct costs
= |ndirect costs

» Human costs
« Liability

A

® o

O

f PRINCIPLES OF TESTING

QAT-10-5

Comparison of Hardware and Software Complexity

Software
1 Simple "tr" (translate
funetion)
7
"2 Some mathematical operation

like matrix multiply

3 Language Compiler

4 Operating system

Hardware

A PLA or combinational cirecuit

Memory address computation
logie and arithmetie

Complete CPU (instruction inter-
preter & executer)

Complete Computer System (CPU,
memory, input/output econtrollers)

Q

PRINCIPLES OF TESTING QAT-10-12 \

THE TECHNICAL BASIS OF VALIDATION TECHNIQUES

REQUIREMENTS

U /
STRUCTURE:

ANALYSIS OF
FORM

FUNCTION:

ANALYSIS OF
CONTENT

INTERPRETATION:

GENERATION OF
INTERMEDIATE
VALUES

VALIDATION:

JUDGEMENT OF
APPROPRIATENESS

RESULTS ANALYSIS

\ SOFTWARE
RIESE/ARCR

PRINCIPLES OF TESTING QAT-10-16

SOME "PRINCIPLES" OF PROGRAM TESTING

o SEPARABILITY

* Testing a thing composed of two parts can be done by
testing the thing's parts.

o REPEATABILITY
« Any test of a module has to be repeatable.
» Non-repeatability implies non-deterministicaily.

o MEASURABILITY

» It doesn't do any good to do something if you can’t meas-
ure the effect of what you've done.

o FINITENESS
= Any test that never stops is not really a test at all.

o FUNCTIONAL NECESSITY

= Every part of a software system has to have some pur-
pose else it need not be part of the software system.

o DISTINGUISHABILITY
+» Two identical tests are no better than one of them.

o THE ENVIRONMENT IS PART OF THE INPUT!

O

{ PRINCIPLES OF TESTING

THE SEPARABILITY PRINCIPLE OF TESTING

: QAT-10-17

i

(BUILD WITH PROVEN COMPONENTS)

P
P1
| - — S — —————
<>
i
P1
P2
P - (P1 + P2)

TEST ALL
THREE .
MODULES
AS A UNIT

(1) TEST P

{2) TEST P2

(3} TEST P WITHOUT
N THE EFFECT OF
P1 AND P2

(ASSUMES NO SIDE EFFECTS)

SOFTWARE) J
"RESEARCH;

bl T e N T

(:) TEST TECHNIQUES SURVEY QAT-85-1

REQUIREMENTS-BASED TEST PLANNING
GOAL ;

ESTABLISH TEST REQUIREMENTS FROM
ORIGINAL SYSTEM REQUIREMENTS:

MODULE TEST
SUBSYSTEM TEST
SYSTEM (ACCEPTANCE) TEST

PROVIDE ASSURANCE OF COMPLETENESS
OF TESTING

IDENTIFY MISSING/EXTRA TESTS

METHOD:
REQUIREMENTS TRACING:
LIST OF REQUIREMENT FEATURES
EEATURES COVERED BY TESTS
R1” METRIC MEASURES:
(:) MISSED REQUIREMENTS
MISSING TESTS
EXTRA TESTS

AFTER CREATION OF DATABASE., ANALYSIS
OF INFORMATION FOR CURRENT R1 VALUE

PAYOFFS:

"EASY” METHODOLOGY, SIMPLE TOOL
TO BUILD

HARD TO APPLY RELIABLY FOR BIG SYSTEMS |
PROBLEMS AND SOLUTIONS:
RELIES ON HUMAN INTERFACE

POSSIBLE HIGH DEGREE OF AUTOMATION , I
(AUTOMATIC COLLECTION OF REQUIREMENTS’ HIT)

kﬁRGE DATABASE IF MODULE, SUBSYSTEM,
D SYSTEM TESTING HANDLED

O L B SOFTWARE)

TEST TECHNIQUES SURVEY) QAT-85-2

CAUSE EFFECT GRAPHS AS REQUIREMENTS-BASED TEST PLANNER
GOAL:

USE FIRST ORDER FORMAL LOGIC AS BASIS
FOR DEFINING INPUT/OUTPUT RELATIONS

GENERATE TEST PLANS (INPUTS AND
OUTPUTS) AUTOMATICALLY

METHOD:

MANUAL OR AUTOMATED SUPPORT FOR
IDENTIFICATION OF INPUT AND OUTPUT
STATES

MANUAL OR AUTOMATED SUPPORT FOR
CAUSE EFFECT GRAPH (CEG) GENERATION

MECHANICAL GENERATIQN OF TESTS
(PATH SENSITIZATION)

O PAYOFFS:

EE LY MECHANICAL OPERATION OF
SYSTEM

EXTERNAL SPECIFICATIONS OF
TESTOBJECT BEHAVIOR

PROBLEMS AND SOLUTIONS:

CAPACITY LIMITED TO APPROX, 75
CAUSES + EFFECTS

TOO MUCH DEPENDENCE ON USER’S i
CHOICE OF INPUT AND QUTPUT STATES

NO WAY TO DESCRIBE CERTA{N SOFTWARE -
ESSENTIAL CONSTRUCTIONS (E.G., LOOPS)

SOFTWARE

RESEAREH

TEST TECHNIQUES

SHRVEY QAT-85-3

FINITE STATE MODELS AS REQUIREMENTS-BASED TEST PLANNER

GOAL :

METHOD:

PAYOFFS:

EXTENDED MODEL OF SYSTEM AS
BASIS FOR BEHAVIOR DESCRIPTION

TESTS OF MODEL BECOME ACCEPTANCE
TESTS OF SYSTEM

MODEL. EXPECTED PROGRAM BEHAVIOR
WITH STATE TRANSITION DIAGRAMS

TEST ALL TRANSITIONS IN DIAGRAM

TEST ALL STATE/INPUT POSITIONS
IN TABLE

MECHANICAL TEST GENERATION,
INPUT/OUTPUT DESCRIPTION

ASSURED REPRESENTABILITY OF
ANY SYSTEM CONSTRUCT (WITH
ASSOCIATED COMPLEXITY)

PROBLEMS AND SOLUTIONS:

BASED ON AUTOMATA THEORY: POWERFUL
BUT COMPLEX TECHNIQUE

LIMITED TO PERHAPS 50-100 ToTAL
STATES

CAPABILITY FOR MODEL TO HAVE “MEMORY”
BUT DIFFICULT TO REPRESENT ITERATION

COMBINATORIC GROWTH IN NUMBER
OF TESTS

SOFTWARE

RESEAREH

TEST TECHNIQUES SURVEY ; QAT-85-4

DESIGN BASED TEST PLANNING
GOAL :

DEVISE TESTS FROM SOME PART OF
EARLY SYSTEM DESIGN DESCRIPTION:

NS CHARTS I

S CHARTS
DATA DICTIONARY

OR, pesieN TESTS FrRoM PDL
METHOD:

TAKE ADVANTAGE OF STRUCTURAL INFORMATION
IN DESIGN

ORGANIZE STRUCTURALLY SOUND, FUNCTIONALLY
ACCURATE TESTS

EXPAND BY MANUAL OR AUTOMATED ANALYSIS
OF "FLOW

PAYOFFS: -

CERTAINTY OF COMPLETENESS
AUTOMATED ASSISTANCE
PROBLEMS AND SOLUTIONS:

COMBINATORICS MAY BE A LIMITING
(WITH OR WITHOUT AUTOMATION)

ESSENTIAL LINK TO “EXTERNAL
SPECIFICATION" MAY BE LACKING

SOFTWARE

TEST TECHNIQUES SURVEY QAT-85-5

TEST PLANNING FROM PDL OR FROM LIVE CODE
GOAL :

EXPLOIT EXISTING STRUCTURAL INFORMATION

IN PDL, OR IN CODE, TO ASSIST IN TEST
PLANNING

METHOD: I

CONSTRUCT DIGRAPH FROM STRUCTURED
OBJECT

REDUCE DIGRAPH TO DESCRIPTIONS OF
INTERNAL STRUCTURE (HIERARCHICAL
DECOMPOSITION

DERIVE COMPREHENSIVE AND COVERING
TEST SETS

USE PATH DESCRIPTIONS TO PLAN TESTS
PAYOFFS:
MAY BE CONNECTED TO PROGRAMMING TASK

POSSIBLE AUTOMATIC SELECTION OF INPUT/
OUTPUT INFORMATION

UNAMBIGUOUS OUTPUTS
PROBLEMS AND SOLUTIONS:

TESTING ONLY STRUCTURE., NOT FUNCTIONS

USE WITH HIGH-LEVEL BEHAVIOR MODELS
ONLY?

TEST TECHNIQUES

SURVEY | . QAT-QS-B

INSPECTION/REVIEW TECHNIQUE AUTOMATION

GOAL :

METHOD:

PAYOFFS:

SUPPORT INSPECTION METHODS FOR DESIGN.
TEST PLANS., AND PROGRAM CODE

PROVIDE AUTOMATED SUPPORT DURING
INSPECTION PROCESS

ASSISTANCE IN APPLYING RULES

POSSIBLE MECHANIZATION IN DESIGNING
AND/OR PRESENTING RULES

ASSISTANCE IN RECORDKEEPING
ASSISTANCE IN RE-INSPECTION

INCREASED PRODUCTIVITY
INCREASED ACCURACY, REPEATABILITY

PROBLEMS AND SOLUTIONS:

INTERJECTION OF “MORE MACHINERY” INTO
ALREADY LABOR-INTENSIVE SITUATION

HAVE A “PC” IN THE INSPECTION LOOP
TO ACT AS SECRETARY

POSSIBLE “EXPERT SYSTEM” APPLICATION

SOFTWARE

TEST TECHNIQUES SURVEY QAT-85-7

STATIC TESTING

GOAL :
APPLY STATIC TESTING (SOURCE BASED)
METHODS TO CANDIDATE SOF TWARE
METHOD:
REQUIRES SPECIAL STATIC ANALYZER |
SYSTEM

ALLEGATION SET MUST BE CHOSEN CAREFULLY

ALLEGATIONS MUST BE BASED ON EXPERIENCE
WITH REAL-WORLD AREAS

PAYOFFS:

AFTER INITIAL CAPITAL COST., VERY
HIGH RETURN (VERY LOW COST/DEFECT)

REPLACES PROGRAMMERS’' ATTENTIVENESS
PROBLEMS AND SOLUTIONS: i

AUTOMATED METHOD MAY BECOME A CRUTCH
FOR PROGRAMMER/ANALYST

LANGUAGE DEPENDENT SYSTEM, RULESET
POSSIBLE EXPERT SYSTEM APPLICATION?

SOFTWARE
RESEARCH

TEST TECHNIQUES SURVEY QAT-85-8

DYNAMIC MODULE TESTING -- TEST CAPTURE/PLAYBACK
GOAL :

PROVIDE AUTOMATED CAPTURE OF ACTUAL
TEST SESSIONS

ASSURE AUTOMATIC. 100% PERFECT.
SESSION PLAYBACK

METHOD:
INTERCEPT TESTERS' KEYBOARD ACTIVITY

INTERCEPT SCREEN AC;IVITY (USUALLY
ON TESTERS COMMAND

GENERATE SUPPORTING KEYSAVE FILES THAT
CAN BE PLAYED BACK

PAYOFFS:
STRONG BASE FOR REGRESSION TESTING
ASSURED REPEATABILITY OF TESTS
POSSIBLE KEYSAVE FILE EDITING
(FOR INCREASED SSMPLICITY; EFFICIENCY
OF KEYSAVE FILES

PROBLEMS AND SOLUTIONS:

TIMING AMBIGUITIES CAN ALTER TEST I
BEHAVIOR =—- USE FAITHFUL TIME RECORDING

DATA VOLUME IS SUBSTANTIAL IF TOO
MANY SCREEN IMAGES ARE SAVED

SOFTWARE)

(:) TEST TECHNIQUES

SORTEY | | QAT-85-9

DYNAMIC MODULE TESTING -- TEST COMPLETENESS ANALYSIS

GOAL :

METHOD:

PAYOFFS:

ASSURE A COMPREHENSIVE TEST SET.
ACCORDING TO SOME REPEATABLE MEASURE

"CONVERGENCE TESTING” TO COMPLETE.
DIVERSIFY TEST SET

TEMPORARY SOURCE PROGRAM INSTRUMENTATION

RUNTIME DATA COLLECTION (POSSIBLY
INTERACTIVE)

POST-TEST DATA REDUCTION, NOT-HIT
ANALYSIS

LOW COST METHOD
IDENTIFICATION OF UNDER TESTED REGIMES
HIGH AVAILABILITY OF TEST TOOLS

PROBLEMS AND SOLUTIONS:

DATA BURDEN CAN BE LARGE IF CARE IS
NOT TAKEN IN PLANNING STAGES

TESTS ONLY STRUCTURE., NOT FUNCTIONS
(STRUCTURAL TESTS MAY BE A GOOD
APPROXIMATION TO FUNCTIONAL TESTS)

\ SOFTWARE

RESEAREH

-

 QAT-85-10

TEST TECHNIQUES SURVEY

DYNAMIC MODULE TESTING -- TEST FILE GENERATION
GOAL:
CREATION OF FILES OF TEST DATA
RIGHT FORMAT FOR TESTED PROGRAM
VARIABLE CONTENTS, USER SELECTABLE
METHOD:
TEST FILE GENERATOR SYSTEM
DESCRIPTOR FILE
VALUES FILE
INSTRUCTIONS FILE

OUTPUT PROCESSING COMBINES THREE
FILES, GENERATES INSTANCES OF TEST
DATA FILE

O PAYOFFS:

FORCES DEFINITION OF OUTPUTS QUICKLY.
EARLY IN TESTING PROCESS

CAN BE ACCOMPLISHED FROM EXISTING
ouTPUT (BY EDITING)

PROBLEMS AND SOLUTIONS:

COMBINATORIC GROWTH OF NUMBER OF
TESTS POSSIBLE

RANDOM SELECTION OF VALUES MAY BE
DECEPTIVE., NOT PROVIDING ENOUGH
COVERAGE ¢

SOFTWARE
RESEARCH

TEST TECHNIQUES SURVEY . QAT-85-11

DYNAMIC MODULE TESTING -- RELIABLE TEST DATA ASSESSMENT

GOAL :
GIVEN A SET OF STRUCTURALLY SOUND TEST,
ASSURE THE THEORETICAL RELIABILITY
OF THE TEST DATA VALUES

METHOD:

REQUIRES ANALYSIS OF SOURCE PROGRAM AND
TEST SET

TESTS DATA RELTABILITY CRITERIA ARE WELL
ESTABLISHED:

AT BOUNDARY VALUES
AT LIMIT VALUES
FOR ITERATIONS

® NEAR “SWITCH” VALUES
UNIQUE INPUT/OUTPUT VALUES

ETC.,

SHOULD BE ABLE TO IDENTIFY “UNRELIABLE” TESTS
BY DETAILED ANALYSIS

PAYOFFS:
ENHANCED CONFIDENCE IN SETS OF TESTS
ELIMINATION OF USELESS OR REDUNDANT TESTS

POSSIBLE IMPLICATIONS ON NUMERICAL
PRECISION

PROBLEMS AND SOLUTIONS:
RELIES TOO HEAVILY ON STRUCTURE

QUESTIONS CONCERNING NUMERIC PRECISION
) (ROUNDOFF, TRUNCATION, ETC.)

RESERRGH

()

TEST TECHNIQUES SURVEY QAT-85-12

DYNAMIC MODULE TESTING -- TESTBED GENERATION
GOAL :

CONSTRUCT UNIT TEST ENVIRONMENT
AUTOMATICALLY FROM SOURCE CODE

METHOD:

SOURCE PROGRAM ANALYZER AND TEST BED
GENERATOR SYSTEM:

AUTOMATIC TEST TARGET CALL GENERATED
STUBS GENERATED
GLOBAL DATA SIMULATED
USER INTERACTIVE CONTROL

CLOSE CONNECTION TO COMPILER SYSTEM

PAYOFFS:
EASES PROGRAMMING., TESTING TASKS
COVERAGE ANALYSIS POSSIBLY AUTOMATIC

STRONG CONNECTION TO INTERACTIVE DEBUG
SYSTEMS

PROBLEMS AND SOLUTIONS:
INVESTMENT COST

GENERALITY (LANGUAGE, SYSTEM DEPENDENCE)
PORTABILITY

HOW TO LOCATE “RIGHT” ELEMENTS OF PROGRAM
SUPPORT ENVIRONMENT

(e s)

TEST TECHNIQUES SURVEY QAT-85-13

DYNAMIC INTERFACE TESTING
GOAL:
HAVE ALL THE INTERFACES BEEN FULLY TESTED

METHOD:
FULLY TESTED INTERFACE MEANS:
CONTROL VARIABLES TRIED
DATA VALUES TRIED:
INPUT
OUTPUT
INPUT & OUTPUT
INSTRUMENTATION OF INTERFACES ALONE
“11" METRIC MEASURES COMPLETENESS
PAYOFFS:

IMMEDIATE KNOWLEDGE OF UNEXERCISED
AREAS

PROBLEMS AND SOLUTIONS:

WHAT PERCENTAGE OF ERRORS ARISE FROM
THIS AREA:

CAPITAL INVESTMENT IN TOOL SYSTEM

POSSIBLE INTRODUCTION OF DATA FLOW
ANOMALIES IF INTERFACE CONTROL TESTING
IS NOT DONE CORRECTLY

TEST TECHNIQUES

GOAL :

METHODS :

PAYOFFS:

SURVEY QAT-85-15

DYNAMIC SYSTEM TESTING

HAVE ALL REQUIRED SYSTEM FEATURES AND
FACILITIES BEEN EXERCISED SUCCESSFULLY?

(1) "sLACK BOX" TESTING:

SEE REQUIREMENTS BASED TESTING
METHODS

(2) SOURCE LEVEL INSTRUMENTATION OF
FUNCTION CALL PAIRS:

AUTOMATIC CALL-PAIR IDENTIFICATION
RUNTIME DATA COLLECTION
POST-TEST ANALYSIS OF DATA

“S1” MEASURE APPLIED TO ASSESS COMPLETENESS

MECHANICAL VERIFICATION OF POWER.,
SOPHISTICATION OF TESTS

IDENTIFICATION OF FUNCTION cALL PAaIrs NOT
EXERCISED (RELATED TO INTERFACE TESTING

PROBLEMS AND SOLUTIONS:

EXTRA RUNNING TIME AND SYSTEM
COMPLEXITY

S1ZE GROWTH OF APPROX. 10%

- B R

TEST TECHNIQUES SURVEY QAT-85-17

REGRESSION TESTING

GOAL :
HAVE ALREADY-TESTED FUNCTIONS BEEN
| RE-TESTED SUCCESSFULLY?
1 ARE NEW FUNCTIONS INTRODUCED?
| ARE EXISTING FUNCTIONS DELETED?
METHOD:

ORGANIZE TESTS FOR AUTOMATIC REGRESSION
EXECUTION

BUILD MATRIX IDENTIFYING STRUCTURE
VERSUS TESTS WHICH EXERCISE STRUCTURE

RE-EXECUTE AND CHECK ONLY NEEDED TESTS
(typicaLLY 1%-10% oF THE TOTAL)

PAYOFFS:

PosSIBLE 10-100:1 REDUCTION IN RETESTING
TIME REQUIREMENTS

SECONDARY BENEFITS FROM WELL ORGANIZED
TEST DATA

PROBLEMS AND SOLUTIONS:
LARGE AMOUNTS OF TESTS DATA REQUIRED
ADDITIONAL ANALYSIS BURDEN

POSSIBLE TROUBLE HANDLING UNEXPECTED i
SYSTEM "ABORTS , OTHER ANOMALOUS
OUTPUTS NOT EASILY AUTOMATABLE

0

TEST TECHNIQUES SURVEY QAT-85-18

MAINTENANCE TESTING -- CHANGE ANALYSIS
GOAL:

RELATE STRUCTURE OF CHANGES IN PROGRAM
TO NEEDED RE-TESTING

METHOD:

IDENTIFY “STRUCTURE UNIT” THAT IS KNOWN
TO CONTAIN ALL OF THE CHANGE:

ADDITION (+)

DELETION (<)
MODIFICATION (0)

IDENTIFY TESTS WHICH ENTER/EXIT THE
AFFECTED REGION

PAYOFFS:
VERY EFFICIENT RE-TESTING SCHEME

DETAILED KNOWLEDGE OF SYSTEM STRUCTURE
AVAILABLE

PROBLEMS AND SOLUTIONS:

* MAY BE TOO DETAILED IF SYSTEM IS LARGE
MAY BE UNNEEDED IF SYSTEM IS SMALL

MAY REQUIRE TOO MANY TESTS

NOT NECESSARILY RELATED TO FUNCTIONAL
TESTING

TEST TECHNIQUES

)

SURVEY QAT-85-21

LANGUAGE VALIDATION TESTING

GOAL:

METHOD:

PAYOFFS:

IDENTIFY PROBLEMS IN COMPILER

FULL VALIDATION -- USE VALIDATION SUITE

PARTIAL VALIDATION -- APPLY SELECTED
PARTS

TOUCH-TEST VALIDATION -- ASSURE REQUIRED
BEHAVIOR OF ALL FEATURES ONE-~BY-ONE

SANITY TESTING -- SIMPLE "COHERENCE”
TESTING

PACKAGED SUITES READILY AVAILABLE
MOST LANGUAGE ANOMALIES IDENTIFIED EARLY
SUBTLE DEFECTS DISCOVERED

PROBLEMS AND SOLUTIONS:

NOT NECESSARILY STRONG STRUCTURAL TESTS

LENGTHY TO ACCOMPLISH EVEN FOR SIMPLE,
WELL KNOWN COMPILERS

CLASSICAL SOFTWARE DEVELOPMENT METHODOLOGY STAGES:

(SOFTWARE LIFE CYCLES QAT-12-1

‘ STARY ,

REQUIREMENTS
ANALYSIS

SOFTWARE
DESIGN

IMPLEMENTATI
(PROGRAMMING)

TEST &
EVALUATION

MAINTENANCE |

FINISH

SOFTWARE
[;e ANED

N

{ SOFTWARE LIFE CYCLES QAT-12-5)

VERIFICATION, VALIDATION & CERTIFICATION

OPERATIONAL MAINTENANCE
OPERATIONAL
ROC | — TEST &
EVALUATION
CERTIFICATION
ﬁ I —}
\ /
VALIDATION SYSTEM
gggsm a- INTEGRATION
& TEST
. T oL
RN
a : £
) SOFTWARE SOFTWARE
PERFORMANCE |t PERFORMANCE
SPECIFICATION TESTS
\ VERIFICATION /
SOFTWARE
PRELIMINARY . | INTEGRATION
DESIGN TESTS
\ /
DETAILED ™ COMPONENT
DESIGN TESTS -
A
CODED ERNC

CODE ™1 pROGRAM

O O

O

f’ SOFTWARE LIFE CYCLES

THE BASIC SOFTWARE ERROR INTRODUCTION/REMOVAL MODEL

Residual

Documentation errors (15/KDS1)

Overall error rate 60/KDS! Code errars {15/KDSI}

Design errors (26/K.DS])

Requirements errors {5/KDSI)

T Percent of % %
errors
eliminated

/=

Cost, C c Cc c
Automated Independent Sisnulation Design
requirements requirements V & V inspections
aids activity

Source: Boehm, Software Engineering Economics, 1982

-

soltware

C

Fietd
testing

QAT-12-10

(

ERROR ANALYSIS

AQ00

B00O

Co00

D000

ECO0O

A100
A200
A300
A800
A500
A600
A700
AB00
A900

B100
B200
B300
B400
BS00
B600

B700

C100
C200
C300
Ca00

o100
D200
D300
D400
D500

D600
D700
D8oo
D900

E100
E200
E300
E400

\

ERROR CATEGORY

COMPUTATIONAL ERRORS '

Incorrect operand in equation

- Incorrect use of parenthesis

Sign convention error

Units or data convers on error
Computation produces an over/under flow
incorrect/inaccurate equation used
Precision ioss due to mixed mode

Missing computation

Rounding or truncation error

LOGIC ERRORS

Incorrect operand in logical expression

Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements in loop

Loop iterated incorrect number of times
(including endless ioop)

Buplicate logic

DATA INPUT ERRORS

Data read with Incorrect format
Incorrect input bus protocol

Data read from wrong device/file
Data read to wrong iocation

DATA HANDLING ERRORS

D550

Data initialization not done
Data initialization done improperly
Variable used as a flag or index not set properly
Variable referred to by the wrong name (A1007)
Bit manipulation done incorrectly
Scaling error
incorrect variable type
Data packing/unpacking error
Sort error
Subscripting error

DATA OUTPUT ERRORS

Data output to wrong device
Data output in wrong format
Incorrect cutput bus protocol
Data read from wrong location

QAT-11-3

f ERROR ANALYSIS QAT-11-4

Fooo INTERFACE ERRORS

F100 Wrong subroutine called
F200 Call to subroutine not made or made in wrong place
F300 Subroutine arguments not consistent in type, units, order
F400 Subroutine called is nonexistent
F500 Software/data base interface error
F600 Software/software interface error
G000 DATA DEFINITION ERRORS
G100 Data not properly defined/dimensioned
G200 Data referenced out of bounds
G300 Data being referenced at incorrect Jocation
G300 Data pointers not incremented properiy
HO000 DATA BASE ERRORS
H100 Data not initialized in data base
H200 Data initialized to incorrect value
H300 Data units are incorrect
Jo00 OTHER
J100 Cycle time limit exceeded
J200 Memory storage limit exceeded
J300 Wrong data states at time of concurrent voting

J400 Timing error between 1/0 and CPV; /0 synchronization

w ERROR ANALYSIS

ERRORS TN DELIVERED SOFTWARE

10,000 O MULTI-ERROR EXPERIMENT

® PROGRAM TESTING DATA
A VEY

T T1TT)

!

1000

CUMULATIVE NUMBER OF PROBLEMS
{ il
(-]
L]

\ _
10 oot o1ty Lt 1 reytal]

N\
AN

QAT-11-13

1

Pt

1.0 10.0 100.0
THOUSANDS OF PROGRAM LINES

2\ DATA FROM RUBEY ET AL., LOGICON, 1975

o DATA COMPILED BY BALKOYICH, GRC, 1977
T O MULTI-ERROR EXPERIMENT, GRC, 1979

\—

AN-47553

.J

Reference: Gannon, et. al., "Experimental Evaluation of Software Testing,"

O

O

g

" ERROR ANALYSIS QAT-11-9)
EFFECT OF MODULARIZATION ON ERROR RATES
Number of Modules in System
Number of Lines
of Executable Code 1 2 5
100 1.75% 1.60% 1.30%

1000 2.43% 2.22% 1.95%

10000 3.17% 2.94% 2.65%
Citation: M. Lipow, "Number of Faults Per Line of Code,"
IEEE Trans. Software Engineering, Veol. SE-8, No. 4, July
1982,

-

5

RESENRERS

QO

SOFTWARE COST MODELS

QAT-13-3

COCOMO DATABASE REPRESENTATION OF COST-TO-FIX OR CHANGE SOFTWARE THROUGHOUT LIFE CYCLE

1000 T I T T T
Larger software projects
W A I 1BM-5SD 7]
-)L
] GTE

. 10| -
g 80%
5 Median (TRW survey)
€ S0 20% 7]
S]
§ SAFEGUARD ’ﬂ/ .
g 20 - =1
B
2 10} ~

5 -

Smaller software projects
() - {Boehm, 1980)
2 - —
3 1] |
Requirements Design Code Development Acceptance Operation

test test

Phase in which error was detected and corrected

SOURCE: Boehm, Software Engineering Economics,

—

Prentice-Hall,

1981.

(SOFTWARE\

J

INSPECTION § REVIEW TECHNIQUES QAT~20-1
CODE INSPECTION METHODS

© ORIGIN OF CODE INSPECTIONS

= "Structured Programming” and allied software engineering technolo-
gies of the 1870’s

o ESSENTIAL ELEMENTS OF CODE INSPECTION

= Independent view of quality of software

~ Typical inspection team has various roles:
MODERATOR - coach or key person
DESIGNER - someone who understands the software

CQODER - person who wrote the program
TESTER - person responsible for testing the program

o TYPICAL RULES
= LOGIC: Missing, Wrong, and Extra Segments |
=~ PREDICTED TESTING BEHAVIOR: Common branches taken?
= INTERCONNECTION: Ali links checked? l

o TYPICAL RESULTS
~ 80% of available error population round per inspection cycle
= 82% found during non-dynamic test; 18% found with unit test data

~ Rates range between 539 and 898 NCSSs per hour for design review
and first code inspection.

REFERENCE: M. E. Fagan, "Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systerns Journal, 1976.

INSPECTION RULE SETS QAT-21-2

ASSEMBLER LANGUAGE INSPECTION RULES (CONTINUED)

Data Area Specifications:

11. Check that DSECTs correspond in format to the data which
they represent.

12. if modifications have been made to a data structure, e.g.,
addition of fields within the structure (control block), check
that required alignments are still preserved. Use particular
care in the case of control blocks iteratively generated via
conditional assembly logic.

Even if the first block is OK, subsequent blocks may not start
on the same type of boundary, causing program failure only
when operating on blocks other than the first.

Preferred Coding Standards:

13. Insure that extended mnemonics are used whenever possi-
ble rather than hand coded condition code masks.

14. Check that a save area exists if required and is set up
according to the prevailing operation system conventions
{e.g. forward or backward pointers, etc.). If available, a sys-
tem macro should be used to establish save area linkages
(e.g. the OS SAVE macro).

15. Check that register usage conforms to the prevailing stan-
dards applicable to the project, if any. If no special stan-
dards are in use, then operating system standards should be
applied (e.g., for OS, R13 is the save area pointer; R14 the
return address; R15 the entry point address; R1 the parame-
ter list pointer; R10 and R11 the parameter registers).

16. Check that EQUATESs are all meaningfully defined; in particu-
lar, check that register EQUATES such as “R5 EQU 5" are
not redefined as a short cut method of introducing changes,
as would be the case if the above example were changed to
“R5 EQU 6" in order 1o free register 5, assigning its current
use to register 6.

17. Check that instruction level documentation adds meaning to
the code, for example in the instruction "SR R5,R5 ZERO
R5”, the comment “ZERO R5" adds nothing to the content
of the instruction. Compare: “SR R5,R5 ASSUME NO
REQUESTS PENDING™.

h

l INSPECTION RULE SETS QAT-21-1

2.

10.

ASSEMBLER LANGUAGE
INSPECTION RULES

Base Registers and Addressability:
1.

Check that base registers defined by USINGs are all loaded
at the appropriate time, i.e. before first attempted use.

Check that all temporary base registers are DROPped when
no longer needed.

Check to ensure that base registers cannot be destroyed
during execution particularly via calls to subroutines or
across CSECT boundaries.

Check that all intended entry points are defined by ENTRY
statements. Use the External Symbol Tabie Dictionary to
verify their external status.

Check for operation code misspellings that will nevertheless
be accepted by the assembler because the misspelling is
anocther valid assembler instruction for which the operands
have the same format as the intended instruction.

Check that Load Muttiple (LM) picks up the desired
sequence of full words and that they are placed into the
expected registers.

Check that loop control mechanisms (BCT/BCTR, BXLE,
BXH) do not cause looping one more time than expected, or
one less.

. Ensure that CL!| is not used when TM is really required, i.e.,

check that bit switches are not confused with byte switches.

Check that the EX instructions are set up correctly, in partic-
ular in the case of a variable length move operation (MVC
subject instruction).that | less than the length desired for the
move be loaded into the first operand register of the EX.

Check that register 2 has not been unwittingly destroyed by
a TR (translate) or (TRT Translate and Test) instruction.

{ INSPECTION RULE SETS QAT-21-3 '
ASSEMBLER LANGUAGE INSPECTION RULES (CONTINUED)

Miscellaneous:

18. Check that expressions representing lengths are specified
correctly.

19. Check that all possible cases of conditional assembly param-
eters are generating the code that is expected. An assembly
shouid be produced for all major cases and the logic of each
compared with a card image printout of the source state-
ments.

20. Check system macro calls to insure that keyword parameters
are not specified as positional parameters, and vice versa.

For macros accepting mixed format (i.e. both positional and
keyword parameters} a keyword parameter written in posi-
tional form might be accepted as meaning something else
than intended.

SOURCE: IBM TR 21.630m 3 May 1976

f INSPECTION & REVIEW FORMS

QAT-22-7 W

TB:

EL:
r SuU:

PU:

PE:

CC:

Muodule:

LO:

RU:

DA:

MN:

DE:

PR:

OT:

REINSPECTION REQUIRED?

CODE INSPECTION MODULE DETAIL REPORT

Logic

- Date

Component/Application

MAJOR MINOR

TOTAL

MiIWwWI|E M| WIE

Test and Branch

External Linkages

Register Usage

Storage Usage

Data Area Usage

Program Language Usage

Performance

Maintainability

Design Error

Prologue

Code Comments

Other

TOTAL

{Y or N}

O O O

s
INSPECTION & REVIEW FORMS QAT-22-6
SUMMARY INSPECTION REPORT INITIAL DESIGN (] DETAILED DESIGN (] CODE (]
Date
To: Design manager Development manager
Subject: Inspection report for Inspection date
Application
Component(s)
Work Performed By
Initial Detailed inspection Person-Hours (X.X)
Full | Designer [J|Designer [ELOGC/NCSS Actual Estimated
New or Detailed Programmer Added, Modified, Deleted Qver-
Modute| or Part | Designer (3 3] Est. Pre, Est. Post. Rework view & | mnsp. | Re- Follow-

Name |Mod. | Insp. | Programmer]| Tester OlaimM|[D]AITM]|D| AL M| D | Pep. | Meetg. |work | * up |Component

Totals

Reinspection required? Length of inspection {clock hours and tenths)

Reinspection by (date) Additional modules

DCR 1D's written

Problem summary: Major Minor Total
Errors in changed code: Major, Minor Errors in base code: Major Minor
Initial Designer Detailed Designer Programmer Team Leader Other Moderator’s Signature

(SOFTWARE))

RESELRCER

(INSPECTION & REVIEW TECHNIQUES

CODE INSPECTION ERROR ANALYSIS

QAT-20-4

—

Error Category Total
Error Type Missing Wrong Extra Errors Error %
CC Code Comments 5 17 1 23 6.6
DA Data Area Usage 3 21 1 25 7.2
DE Design Error 31 32 14 77 221
‘ EL External Linkages 7 9 3 19 55
.0 Logic 33 49 10 a2 26.4
MN Maintainability 5 7 2 14 4.0
OT Other
PE Performance 3 2 5 10 29
PR Prologue 25 24 3 52 149
PU Prog. Lang. Usage 4 9 1 14 4.0
RU Register Usage 4 2 6 1.7
SU Storage Usage 1 8 g 2.7
TB Test and Branch 2 5 7 2.0
123 185 40 348 100.0

FORMAL METHODS QAT-27-1 N

STATIC ANALYSIS —
SYMBOLIC ANALYSIS OF PROGRAMS

o GOAL

Static "Interpretation” of Program Behavior at the Programming Language
Level

NOTE: This process makes a number of assumptions about the environ-
ment, the properties (primarily determinism) of the programming language
behavior, and the "meaning” of resulits.

o TECHNIQUE

~ Choose a Path: This requires specifying the symbolic outcomes
of some of the program predicates, in turn based on knowledge
of the intended/expected program behavior.

= Perform Symbolic Interpretation of Actions Along Chosen Path: |
This produces a "formula” set that describes the computation the
program performs on the specified path.

~ Study Resulting Input/Output Relationship Against Specification ﬁ

o PROBLEMS

~ Combinatorics - The number of possible paths, or the path for-
mulas in the presence of iteration become large and/or compii-
cated, apparently exponentially with program size.

= [ogical Choices - Difficult to make in practical cases. F
= Human Interaction Design - How to communicate effectively to

human user.
« Others?

o PROGNOSIS
Most Promising Method, Much Research Needed.

REFERENCES: -

W. E. Howden, "Symbolic Testing and the DISSECT Symbolic Evaluation System,” IEEE
Trans. Software Engineering, July 1977,

L. Clarke, Current work at University of Massachusetts

R

FORMAL METHODS
SYSTEM FLOW WITHIM A SYMBOLIC EVALUATION/EXECUTION SYSTEM

QAT-27-2

—
SOURCE - SYNTAX
TEXT ANALYSIS
¥
FORMULA | ’ £ORMULA l VALUE
MANIPULATION d PRESENTATION INSTANTIATION
\ A\
A 3
y
SINGLE
| FORMULA YALLE
EVALUATION
b
y
MULTIPLE
FORMULA
EVALUAT ION
Y Y
USER PRODUCE . T0O
=E=>"1 INTERACTION =1 ouTpuT EXECUTION
OUTPUT
(SOFTWARE\ y

FORMAL METHODS QAT-27-4

SYMBOLIC ANALYSIS APPLIED TO
NUCLEAR POWER PLANT SYSTEM

o GOAL

Show how symbolic evaluation techniques can be applied now.

o OUTLINE OF EXPERIMENT
= Software written in FORTRAN/IFTRAN,
= Symbolic evaluator developed on ARPANET:

— uses MACSYMA (a lisp-based system)
— displays "formulas” to user

= User compares original and implemented formulas for
equality.

NOTE: Differences between computed and actual formulas are mis-
O takes. These are highly visible because special formula formatting
methods are used to enhance differences.

o RESULTS THUSFAR

(Final control software not yet available.)
» High expectations from systematic analysis
= Some "errors" already found in preliminary analysis

o PROGNOSIS

Good results expected based on current estimates.

REFERENCE: C. V. Ramamoorthy, et. al., "A Systematic Approach to the Development
and Validation of Critical Software For Nuclear Power Plants,” Proc. 1879 international
Conference on Software Engineering, Munich, West Germany, September 1979.

OFTWARE

— —an
-

RESEARCH

i

' STATIC ANALYSIS METHODS

QAT-24-2
STRUCTURE OF STATIC ANALYSIS SYSTEM

USER
COMMANDS
— — i T i1 __T
SOURCE] |

PROGRAMS |

| PROGRAM
| PRE-PROCESS |
| ¢ ¢ ¥ !
| | DATABASE ALLEGATION i
SELECTION [l

| | !
| [
T -
| ALLEGATION l
ALGORITHM
‘er”,,,a» EXECUTION l
EXCEPTION
REPORTS l
STATIC |
ANALYZER

Q Q O

R

STATIC ANALYSIS TOOLS QAT-25-7

EXAMPLE OF UNIX/LINT STATIC ANMALYZER FOR "C" PROGRAMS

“ald.e", line 26: warning: old-fashioned initialization: use =

"ald.c", line 186: sflag undefined

"ald.c", line 186: warning: sflag may be used before set

"ald.c", line 186: warning: sflag unused in function main

"ald.c", line 137: warning: n unused in function main

"ald.c", line 256: warning: old-fashioned assignment operator

"ald.c", line 299: warning: illegal combination of pointer and integer
"ald.c", line 651: warning: illegal pointer combination

"ald.c", line 742: warning: struct/union or struct/union pointer required
"ald.c", line 876: undefined structure or union

"ald.c", line 876: warning: illegal member use: n_name

"ald.c", line 936: warning: function lookloc has return{e); and return;

_putw, arg. 2 used inconsistently "ald.c"(630) :: "ald.c"(742)

chmod returns value which is always ignored

dseek, arg. 1 used inconsistently "ald.c"(747)y :: "ald.c'"(288)

enter returns value which is sometimes ignored

error: variable # of args. "ald.c"(911) :: Mald.c"(151)

error, arg. 3 used inconsistently "ald.c"(911) :: "ald.c"(464)

fclose returns value which is always ignored

fread, arg. 1 used inconsistently "fusr/1ib/1lint/11ib-1c"(74) :: "ald.c"(770)

link returns wvalue which is always ignored
loadl returns value which is sometimes ignored

lookloc, arg. 1 used inconsistently "ald.c"(926) :: "ald.c"(613)
mget, arg. 1 used incomsistently "ald.c"(709) :: "ald.c"(247)
mput, arg. 1 used inconsistently "ald.e"(735) :: ™ald.c"(493)

signal returns value which is sometimes ignored
tget returns value which is sometimes ignored
unlink returns value which is always ignored

$

r STATIC ANALYSIS METHODS QAT-24-14

A 'TYPICAL" COST/BENEFIT ANALYSIS
FOR STATIC ANALYSIS

o FACES has uncovered approximately 1 “error” per 200 FORTRAN
I statements in NASA/Huntsville application.

o Conservatively it costs $10 per statement to bring software to the
point where it can be processed by a static analysis system.

o It is estimated to cost $100 to repair a mistake using manual methods
(once it is found).

e FACES costs approximately 10 cents per statement in a commercial
environment.

o Typical Situationt:

» 20,000 statement program
FACES discovers 100 errors at a cost ¢f $2000
Manual identification/repair would cost $10,000

*

&

O

Manual repair (new statement rates) would cost $1000
Saving is: $10,000 - $($2000 + $1000) = $7000

~ Implication: Using faces at a cost of $2000 results in a
$7000 savings

= Benefit{saving)/cost = 3.5

»

+ SOURCE: Wendel & Kleir, FORTRAN Error Detection Through Static Analysis, 1877.

O

(FORMAL METHODS QAT-27-3 N
STATIC ANALYSIS —

PROGRAM PROVING METHODS

o GOAL

Mathematical approach to *'proving” the correspondence between
a program and its formal specification.

o TYPES OF CORRECTNESS

» Total Correctness
» Partial Correctness
+ Path Correctness

o TECHNIQUE
« Define set of verification conditions.

= Prove consistency, using contradiction proof method, that
the verification is consistent with program and all other
assumptions.

o ASSUMPTIONS
» Environment :
* Programming Language i
= Operating System
= Validity of Proof
NOTE: Some programs proved correct in the literature have been
shown to actually contain errors.

NOTE: Failure of Proof Method can be due to failure in prover, verifi-
cation conditions, environment understanding, etc.

o LARGEST PROGRAMS PROVED

= 1700 NCSS Assembly Language Interpreter, 43 errors

NOTE: Approximately 85% of these errors could be found |
with simpler testing methods.

« USC/ISI's “PROVE OFF", seeking thorough proof of 2000
NCSS System.

= Typical cost $50 - $500/NCSS is expected range.

REFERENCES:

S. L. Hantler and J. C. King, “An Introduction to Proving Correctness of Programs,”
ACM Computing Surveys, September 1976

S. L. Gerhart and L. Yelowitz, "Observations of Fallibility in Applictations of Modern Pro-
gramming Methodologies,"” IEEE Trans. Software Engineering, Sept. 1976

r TEST PLANNING PRINCIPLES QAT-30-1

LEVELS OF SOFTWARE TEST PLANNING

o REQUIREMENTS BASED TEST PLANNING
« Requirements analysis
« Test plans

» Requirements coverage

o EARLY-DESIGN BASED TEST PLANNING
~ Test plans
= Documentation strategy

o DESIGN/PSEUDOCODE BASED TEST PLANNING
1 ~ QOperates from design embryo

» Takes advantage of existing structure

O « Automatable function

| o CODE BASED TEST PLANNING
» White box testing
= Black box testing
= Gray box testing

’ STRUCTURED TESTING

QAT-31-1

a
REPEAT
CASE OF ()
CASE ()
b
CASE ()
c
CASE ()
d
END CASE
CASE OF ()
CASE {)
e
CASE ()
f
CASE {)
g
CASE ()
h

END CASE
UNTIL ()
1

IF ()
CASE OF ()
CASE ()
m
CASE {)
n
CASE ()
0
END CASE

Y
ELSE
CASE OF {)
CASE (}
p
CASE ()
q
CASE ()

r
END CASE

(STRUCTURED TESTING

IMPACT OF AN ESCAPE STATEMENT

(1) WHILE WITHOUT ESCAPE

WHILE (p)
A

B
C
END WHILE

(2) WHILE WITH ESCAPE

WHILE (p)
A

IF {py)
ESCAPE
END IF
B
C
END WHILE

QAT-31-4 F

ABC

r)

STRUCTURED TESTING QAT-31-10

PROGRAM DECOMPOSITION PRIMITIVES

Succession: g /q

A B
Alteratidn: IF ;(\p) @’Q
ELSE X
B A B
ENDIF
Iteration: NHI‘E&E (p) /{ﬁ‘&
ENDWHILE
B A B

Invocation: CALL A{...) /ﬁ\
B
A

STRUCTURED TESTING QAT-31-6

REDUCTION TECHNIQUES FOR (M,N) CYCLES

o Any digraph can be reduced to a form that
involves only (1,1) cycles.

o It may be necessary o add edges and nodes.
» Repeated Statements
= Duplicated Labels

o Basic Algorithm

~ Reduce (M,N) cycle to (M-1,N) cycle and a (1,N)
cycle.

= This is done by copying the (1,N) cycle.

~ Reduce a (1,N) cycle to a {1,N-1) ¢ycle and a
{1,1) cycle.
~ This is done by “splitting” a node.

= Continue until only (1,1) cycles remain.

{ STRUCTURED TESTING QAT-31-8 \

REDUCTION OF (M,N) CYCLE TO (1,N) CYCLE AND (M-1,N) CYCLE

(M-1,N} CYCLE i

SOFTWARE}
RESEARCH

QAT-31-9 \

(STRUCTURED TESTING

EXAMPLE OF PROGRAM INTERPRETATION/CONVERSION OF (1,2) CYCLE

A
tag = IITRUEH
temp = Pl
WHILE (temp AND tag)
B
IF (P2)
C

temp = P1
ELSE !
tag = "FALSE"
END IF
END WHILE
IF (tag)
D

ELSE
E
END IF

RESERRGH

STRUCTURED TESTING QAT-31-12

GENERIC EXAMPLE (CONDITIONED ITERATION)

SUBROUTINE name (arquments)
declarations
initialization
IF (initial-test)

setup

WHILE (termination-condition)
Fk

incrementation
END WHILE

teardown

ELSE
alternative
END IF
wrapup
RETURN
END

SOFTWARE
RES

—————

STRUCTURED TESTING QAT-31-13

GRAPH OF CONTROL FLOW FOR GENERIC EXAMPLE (CONDITIONED ITERATION)

initiatization

setup incrementation

alternative

teardown

wrapup

\ {SOFTWARE} /

-

e

STRUCTURED TESTING

QAT-31-15

HIERARCHICAL DECOMPOSITION OF GENERIC EXAMPLE

name;

0:
initialization
Wrapup
alternative
1: setuf
teardown
2 F incrementation

Oth DECISIONAL LEVEL:

1st DECISIONAL LEVEL:

Z2nd DECISIONAL LEVEL:

(SEE BELOW)
TEST initialization AND alternative AND wrapup

TEST setup AND teardown

k

TEST F* AND incrementation

SOFTWARE) -
RESEARCH

r

STRUCTURED TESTING

EXAMPLE BY NAUR SHOWING DIRECTED GRAPH STRUCTURE IN QVERLAY

I
?
3
i

5

MANPOS ~ (i1} # ©

< I
ITIA N IR LA
f1li (

fovr b ore b ostep

o
until bulpos

EFTARE FR I'-,h‘.‘l':“_'!‘, it
1l il b vufpos;

e d

A I h('h‘\in

Dosliros

l SOFTWARE

RESEARCH

QAT-31-16 '

STRUCTURED TESTING QAT-31-17
HIERARCHICAL DECOMPOSITION OF NAUR'S EXAMPLE

NOTES

0 THE SEGMENT "A" IS COPIED ONTO THE TREE FOR P IN TWO LOCATIONS
o EACH ELEMENT OF "A" RESIDES AT TWO LEVELS OF DECISIONAL DEPTH

SOFTWARE |
RESEARCH J_“'

TN

STRUCTURED TESTING QAT-31-18

IMPLIED TESTING SCHEME
FOR NAUR’S EXAMPLE
BASED ON DECOMPOSITION TREE

o Test A in pieces in the following way:
~ Test for fand k.
« Test for d.
« Testfor fand g.
= Test the iteration on /.
e Test P - A in the following way:
= Test for n.
» Test the iteration on A.
o Test P in the following way:
= Test P with A at zeroth decisional level.

» Test P with A at first decisional level.

' STRUCTURED TESTING

IHD EXAMPLE (brfexl.*)

O

PATH SET:

L]

~iTy

@22
(13) 12 (10 (37 18 20) 16 21 23) 14 24 25 2%
{13) 12 (15 (17 18 20} 14 22 23) 15 24 25 24
(18 12 (0% (17 19 200 £6 24 23) 14 24 26 24
(13) 12 {15 U7 19 20) 16 22 23) 14 24 25 2¢
{13) 12 (15 16 ”i 23) 14 24 20 2é

(13) 12 (15 16 22 23) 14 24 252

(13) 12 14 24 20 246

12 413 (17 18 200 16 21 23) 14 24 25 24

12 {10 (17 18 20) 36 22 23) 34 24 25 26
1245 (17 19 200 16 21 23y 14 24 25 26

12 (15 (37 19 20) 16 22 23) 14 24 20 26

12 €15 16 21 23) 14 24 23 28

12 055 36 22 23) 14 24 ™ 7

12 14 24 23 2+
By a0

L T S SV Y

A RS RS RS RS R BRI B RS B RS RIS MY P
R I S T T o iy Wi W e vy W Y
sty

231 1
23) 1
FEI R
31
25 24
25 26

e

L e e A o L I)

P

.o 203 1
wo (17 19 200 1
a3 1205 7 1920 1
1 {33) 12 (15 16 21 23) 14
(13) 12 {15 16 22 23} 14
(13) 12 14 24 25 24
12 {15 (17 18 20) 16 21 23) 14
12 (15 (17 18 200 14 22 23) 14
12 (15 €17 19 20) 16 21 23} 14
12 (15 (37 39 20) 16 22 23) 34 24
12 (15 162125 142625 26
12 (1516 22 23) 14 24 25 %
12 14 25 25 26

n L

et btk A ek A Bk R Bk boA b bt e R b A
ey g M O D D D T D D ST O D D D

£d
22
21
2

LaN)

b
&
b

22
24
2
2%
24
24

34
24

91
71
91
71
¥ 1
71
¥
71
71
71

e R B IR R Y |
e e Nt e et et e s

N LA LT L LT Ll L en
bt Boh bt bk ek b b b bk bt e e e e O OO OO GO O 00 0O €O OO 05 1

1
1
1
1
i
i
1
i
1

[I A AT T I i e e

b2

t 26

(R 1205 (17 18 20) 14 21 200
£13) 12 (15 (17 18 20) 16 22 23) |
(B3} 12 415 (17 19 20) 18 21 20 §
€13} 12 {15 (17 19 200 16 22 23} 1
(0 12 05 21 Y 14 24 5 24
(137 12 {15 16 22 23) 14 24 25 26
{13) 12 14 24 20 26

12 €15 {17 18 20) 16 21 23) 14 24 25 24
1215 (17 18 20) 16 22 3) 14 24 25 4

[S N

12 (15 (17 19 200 16 21 23) 14 24 25 26
12 (15 (37 15 20) 14 22 23) 14 24 25
12 615 45 21 23) 14 24 25 2¢

12 (30 16 22 23) 14 24 20 %

12 14 24 25 28

26

ot bmh B bt et bt Bk e bk Beed ek bt ek Bt bt ok Berh ot bk fh ek et heen |
Gt O O Gt Gl Lad O Lad God Eab Cad Ca) Cad Oa) Rad Gel Ga) Cad Bad G Gl €l G G
o R T Y N N I R R A e R e T T e T

MO0 SO A0 SO D RO N0 WD 0 D S0 O SO
Pt heA e ek b bt b et e bt ek Sews Jeal Bh Beeh

QAT-31-29

§ 24 25 2
424 5 2
& 24 25 26
424 25 3

SOFTWARE

RESEBARCH

STRUCTURED TESTING QAT-31-27)

IHD EXAMPLE (brfexl.¥)

DIGRAPH: COVER SET:

%
o s
36 44
o
744
738
8 4l
4
41 37
44 50
50 134
50 G2
52 42
P
113
&
46 80
64 &7
&7 71
&7 71
71 46
80 83
80 83
83 42
13 13 '
134 151
151 D

12 (17 18 20) 16 21 2
15 (17 19 20) 16 22 3

o,

[I
Y P

o Crs
(2%

SOFTWARE

Q

‘ STRUCTURED TESTING

IHD EXAMPLE (brfexl.*)

TREE:

\ L 1
\ / \
/0
/ \\ 1] /0
/ B ,/ \ 4 \
5 b 17 o 16 0
N s VAN
¥ 8 + \n . on
7 \\ _
6 7 % {9 a2

QAT-31-28 T

HESEARGED

4 TESTING OTHER SOFTWARE STRUCTURES

|

CONCURRENT PROGRAMS
(FORK/JOIN PRIMITIVES)

o Apply principle of separability
¢ Assumes call FORK/JOIN (A,B)
o Tests required are:

* TESTA

~ TEST B

« TEST FORK(A,B)

~ TEST JOIN(A,B)

FORK{A,B)

JOIN(A,B)

QAT-35-1

B

by testing.
|
A 18
1, ——> A B ————> 0
Ig —>| B > A /> 0, ‘

R

TESTING OTHER SOFTWARE STRUCTURES QAT-35-2 N

COOPERATING PROGRAMS

o Two (or more) programs intercommunicating in a
rigorous intercommunications scheme
» Test by splitting the communication paths

o Note that standard communications primitives are
designed so that they survive the dislocation required

‘RESEARCH;

friereliapy bty b

(CAUSE /EFFECT GRAPHING QAT-33-1

R

CAUSE/EFFECT GRAPHING

o CAUSE/EFFECT GRAPH

A method for expressing the relationships between:
~ Causes: Explicit and implicit input conditions I
= Effects: Responses by the program (output conditions)

o PROCEDURE

Construct a cause/effect graph (roughly) as follows: §

= ldentify from the program specifications all implicit
and explicit causes.

— Assumes a verbal, or at least English-
language, level of specification.

— May require detailed study.
= Assign each cause a number.
» Repeat for program effects.

~ ldentify all relationships between causes and
effects, using the potential relationships:

— and, or, not, exor...

— if (cause) then (effect)
if (cause) then (intermediate term)

~ Draw a graph representing these relationships.

~ Design tests based on a decision table representing
all of the legitimate cause/effect relationships.

= Verify that all of the program predicate outcomes
(C1 measure) have occurred at least once.

CAUSE/EFFECT GRAPHING QAT-33-2
MYERS' EXAMPLE OF CAUSE/EFFECT GRAPHS

PROBLEM STATEMENT

3.4 The CHANGE Subcommand

The CHANGE subcommand is used to modify a character string in the
“current line” of the file being edited.

3.4.1 Inputs
The syntax of the subcommand is:
C /string 1 /string2

String1 represents the character string you want to replace. It can be from 1

through 30 choracters fong and can contain any characters except "/
String2 represents the character string that is to replace stringl. It con be
trom O through 30 characters iong and can contain any charocters except
/" i string2 is omitted (zero length), string 1 is simply deleted.

At least one blank must follow the command name “C”.
3.42 Outputs

The changed line is printed on the terminal if the command is successful, If
the change cannot be made because string1 cannot be found in the current
line, the message “"NOT FOUND" is printed. If the command syntax is incor-
rect, the messoge “INVALID SYNTAX" is printed.

3.4.3 System Transformations

i the syntox is valid and string] can be found in the current line, then
string] is removed from the line and string2 is inserted in its place. The line
is expanded or contracted 6s necessary based on the length differences
between string1 and string2. If the command syntax is invalid, or if string]
cannot be found in the current line, the fine is not changed.

SOFTWARE
RESEAR

! CAUSE/EFFECT GRAPHING QAT-33-4

MYERS' EXAMPLE OF CAUSE/EFFECT GRAPHS

CAUSE/EFFECT RELATIONSHIPS AND REPRESENTATION

IDENTITY Function
“IF a THEN b”

NOT Function
“ IF NOT a THEN b"

(O —rr—0)

OR Funcrtion AND Funcuon
“IF a OR b THEN ¢" “IF a AND b THEN ¢
AT)
NOR Function NAND Function
“IF NEITHER 5 NOR b “IF NOT a AND b
THEN ¢ THEN ¢

RESEAREH

N R

——

| CAUSE/EFFECT GRAPHING QAT-33-5
MYERS' EXAMPLE OF CAUSE/EFFECT GRAPHS

CAUSE/EFFECT CONSTRAINTS AND REPRESENTATION

EXCLUSIVE Constraint

"AT MOST ONE OF a b
CAN BE INVOKED"

RO,

-~
-

-
E<S
Y
.,

e

®

ONE—-ONLY-ONE Constraint

“ONE AND ONLY ONE OF
a, b CAN BE INVOKED"

A

-~

MASKS Constraint

"EFFECT g MASKS
OBSERVANCE OF
EFFECT b”

INCLUSIVE Constraint

‘AT LEAST ONE OF a_h
MUST BE INVOKED"

REQUIRES Constraint

"IF a IS INVOKED THEN
b MUST BE INVOKED™

(SOFTWARE)

\RESEARCH)

f CAUSE/EFFECT GRAPHING

MYERS' CAUSE/EFFECT GRAPHS EXAMPLE

FINAL CAUSE/EFFECT GRAPH

~
hY

m
/T\

Ve
4

~
~

m
/T\

£
/

CAUSES (INTERMEDIATE
RELATIONSHIPS)

EFFECTS

—

QAT-33-6

\ (SOFTWA

.

PN ot T)

CAUSE/EFFECT GRAPHING QAT-33-7
MYERS' EXAMPLE OF CAUSE/EFFECT GRAPHS

RESULTING DECISION TABLE

TESTS

1234567 8 91011121331415161718 19 2021 22

] PReprpepeprpebeyofedeyerefepolobaalafnr| S
2 Pprpifeprpefelvfefoeyrfebrdoiolvdittift S{t
CAUSES
3 bl sisisis|sis|t|1f1]s]|slsislsis!|sis 518
4 SIsIsjif{t]r]|sis|s|sis|sit]|i|i1|ls]s]|sls 515158
5 S|ISis|s|s{s|t]r|ri{sislsisis|{s|i|stilstiii)
6 Lis|s|ris|sjr|s|s|t|s{stiisisiiis|s|sl|s 515
7 Spl|s|sitrisis|ilsisit|s|s]i|stsl|ils S5|5]8]s
8 SIsjtysisyt]sisli|sis|ilsis{i|{sislililsi |
@ vbrprpryeprprprr)sisisisisi{slsisis|xlixix|x
31 PIPIPIPIPIP(P|PIP|AJA|AIAlIAlAlAlA[AIALA Al A
EFFECTS 32 PIP(P|PIP|PIPIP(PIAlAIA|AIALIAlA AlAlATATA]A
33 AlAlAJA|A|lATAlAlALPIPIPIP]IPIPIPIP|P|A ATA|A
34 AlalalalalAlAlAlAlAlATAlAlAlAlIAlATAIPRPIR]lPIP
S: Suppressed
l: Invoked
i X: Don't care
A: Absent
P: Prasent

THEORETICAL CONSIDERATIONS QAT-28-1
THEORETICAL RESULTS

¢ GOAL

State whether defects have been reliably removed by test or tests.

o RELIABLE TESTING THEOREM

» Theorem States: There are Test Data Selection Criteria
such that when a program operates on a subdomain D of
the entire input domain S and also meets requirements of
theorem, then the program can be pre-edited to operate
on all inputs.

~ Issue Is: How much less than all possible inputs is
minhimum needed for assurance of defect-free
software?
o CURRENT STATUS
~ Some programs have reliable tests, some do not.

« Under certain technical restrictions testing is knowrn to be
reliable against non-structural errors.

~ Some errors are very difficult to find reliably.

NOTE: Any error must be made manifest by some combination of
inputs, but the problem is to determine what that set of inputs is
without encountering combinatoric limits on testing complexity.

o RESEARCH METHODS
~ Domain Refinement
~ How data characterizes programs

REFERENCES:
W.E. Howden, “Reliability of Path Analysis Testing Strategy," IEEE Trans. Software
Engineering, June, 1975.
J.B. Goodenough and S.L. Gerhart, "Toward A Theory of Test Data Selection,” IEFE
Trans. Software Engineering, June 1975.

f THEORETICAL CONSIDERATIONS

—

QAT-28-2

SOME RELATIONSHIPS BETWEEN SOFTWARE FUNCTION AND LEVEL OF TESTING

THE NORMAL
FUNCTION OF
SOFTWARE

RELIABLE

TESTS
(ggﬁgggTICAL DATA THAT
STRESS TESTING “FINDS" AN
ERROR

AD HOC TESTING

MINIMUM TESTING

INPUT
DOMAIN

(SOFTWARE]

RESEARCH)

Q O O

e T R

THEORETICAL CONSIDERATIONS QAT-28-3

STATEMENT TYPES AND CORRESPONDING FUNCTIONS

Statement Functions
L. Assignment Data access, data storage, arithmetic
expression
2. Comditionals Data access, arithmetic expression, relational

expression, boolean expression

3. loops Loop entry functions: data access,
arithmetic expression, relational ex-
pression, hoolean expression

Loop exit functions: data access, arith-
metic expression, relational expression,
boolean expression

Index initialization: data access, data
storage, arithmetic expression

Indexing: data access, data storage,
arithmetic expression

Reference: Howden, 1980

(SOFTWARE)

RESEAREH

THEORETICAL CONSIDERATIONS

O

RELTABLE TEST DATA FOR SIMPLE ERRORS IN STATEMENT FUNCTIONS

Functions
1. Data access
2. Data storage
3. Arithmetic expression

4, Relational expressions (of
the form E1 T Ez)

5. Boolean expressions (of

the form B(E,,E,,...,E })

Reference: Howden, 1980

Reliable Test Data
Unique value for variable
New value for variable
Evaluates to non-zero quéntity
Tests that evaluate’ E.1 and E2 so
that E1 < E2’ E1 = E2 and E1 > Ez;
tests that evaluate E1 and E2 S0

that for

(i) r =<, 2:
52-51 is maximal and < 0
EZ—E1 is minimal and 2 0
(ii) r = >, <:
EZ-E1 is minimal and > 0
EZ—E1 is maximal and < 0
(iii) r = =, #:
EZ—E1 = 0,

Tests that evaluate Ei’ 1 <iz<n, so

that all possible combinations of
True and False are generated

QAT-28-4

(SOFTWARE) __ J
BRG]

I TEST DATA GENERATION QAT-29-1 \

TEST DATA
GENERATION PROBLEM

o GENERAL STATEMENT

+ Find test data that forces a program to execute a
| previously unexercised segment.

» Choose data values automatically.
~ Unsolvable in general.

§ ¢ APPROACH i
~ Choose candidate path.
= Analyze formulas (path conditions).
~ Solve set of inequalities.

o LIMITATIONS
= Combinatorics
« Complexity

= Non-Linearity

f TEST DATA GENERATION QAT-29-2

A REPRESENTATION OF THE TEST DATA GENERATION PROBLEM

ENTRY

ENTRY
SEGMENT
NAME { INPUTS, OUTPUTS)

q

CRITICAL ‘\’d)__b (GOES SOMEWHERE ELSE)

DECISION "]

SELECTED TARGET SEGMENT

EXIT

V

INVOCATIONS TO OTHER
MODULES

RESIEARCH

(TEST PLANNING PRINCIPLES QAT-30-5

WHITE BOX TESTING -- SUMMARY

PROGRAM CLASSIFICATION

PURE SP SP Non-SP
(GOTO {With
Free) GOTOs)

)

DIRECTED
GRAPH

\

PATHS OF
PARTICULAR
KINDS

X

CHOOSE
TESTCASES

\

CHOOSE
=+ TESTDATA >
VALUES

RUN 54 EVALUATE
TESTS TESTS

' TEST PLANNING PRINCIPLES QAT-30-6 \

BLACK BOX TESTING -- SUMMARY

PROBLEM

SOFTWARE

MODEL
OF
PROBLEM

ENGINEERING

r

REDUCTION
PROCESS ON
MODEL

TEST
CASE
SELECTION

DEVELOPED
PROGRAM

i i
TESTDATA

JVALUE +J RUN EVALUATE
1SELECTION TESTS 1 TESTS

R

SYSTEMATIC TEST METHODOLOGIES QAT-44-1

LEVELS OF TESTING METHODOLOGY

o SINGLE MODULE TESTING
~ Comprehensive exercise of single program(s})
~ Exhaustive investigation of behavior of module
= Maximum level of quality assurance

= "No system is better tested than the level of testing
attained for the least-tested module.”

o MULTIPLE MODULE (SUB-SYSTEM) TESTING
» Demonstration of functional behavior

= Integration of proven/tested modules into coherent sub-
system

« Localization of computational resource

o INTERFACE TESTING

« Demonstration of quality of interaction between subsys-
tems

= Protection of subsystems from each other

o SYSTEM TESTING

~ Formal acceptance testing and/or certification of software
system

« Qverall demonstration of function

« Assessment of service-ability, future "reliability,” other
measures or robustness

(SYSTEMAT!C TEST METHODOLOGIES QAT-44-2 \

SINGLE MODULE SEGMENT TESTING METHODOLOGY

(BEGIN)
VAN

USE SEED CHOOSE
TESTCASE LLIE S
TESTCASE
| \ | /
ADD TO
GENERATE NEW
TESTCASE |
FiE TESTCASE DATA
A
A A 4
TESTCASE SET UP
FILE EXECUTION

A
=K EXECUTION

Y

GENERATE
COVERAGE
REPORTS

A

COVERAGE
REPORT

A

CHOOSE
- UNTESTED/, TARGET
? SEGMENT

Y

{ TESTING METRICS
STRUCTURE BASED COVERAGE MEASURES -- MODULE LEVEL

Module Level Coverage Measures

Nane

Short Description

@

Clp

Cik

Execute all
stataments in a

a program,

Execute all non-null
segrents in each
program.

Execute all

segnents in
each program.

€l and also

all interior and
exterior features
of iterations.

Cl and each relational
term to each possible
cutcome

€1 and also ome
exterior and an upper
and Tower interior
test,

2 plus each diff-
erent non-iterative
paths.

€1 plus one test for
each iteratiion 1 =1,
2y....k times,

Coments

Historically this is what most
ammers “think" is the right
evel of testing, but it may leave
out many segrents,

This measure is close to the full
€l measure {below) and may in some
cases be equivalent to it.

This is the basic measure of
testing coverage now advocated
by most experts. It has the
intuitive benefit of attemting
to exercise each "part" of a
program.

This measure extends C1 to include
sare of the basic properties

of program iterations or loops

in a way similar to that in

proof of correctness.

This measure extends Cl by requiring
that each relational expression in
any logical expression be exercised
to each possible cutcome. That is,
predicates must be broken into their
simple parts and each part tested.

This measure extends Cl+ so that
three properties of each iteration
are checked: no iteration, a lower
iteration count, and an upper itera-
tion count. Each must be achieved
on successive encounters of the loop.

This extends (2 to include all of
the non-iterative paths within the
program structure. This may be
difficult to achieve in practice.

This measure requires that each
cycle in the program be executed

a fixed number of times, i =1, 2,

3y «eey k, where k is normally set to
an upper bound of k = 2,

SOFTWARE
EESEARCH

QAT-40-1 \

Name

[TESTING METRICS

STRUCTURE BASED COVERAGE MEASURES

Short Description

St

Invoke all modules
at least once.

A1l invocations to
modules exercised
at Teast once.

All invocatias to
a module for each
ossible value of
ogica] expressim
(actal) parameters.

A11 invocations to
a module for each
possible Togical
outcome.

Every module down
to a prespecifiad
decisional depth,

A1l calling chains
from the top
module to any
other module.

One invocation for
all major equivalence
classes possible.

QAT-40-3
-~ SYSTEM LEVEL

Caments

This measure is imsufficient
to assure full exercise of a
software system structure.

This is the minimm useful

systam level structural exercise
measure.

This measure extends S1 to account
for the case when the actual parameter
1ist has a logical expression, and
requires that each possible outcame be
exacised (simila to C1).

This measure extends S1 to include
the case when the module has alternate
logical outcanes, such as RETURN i

or error modes (language dependent).

This measure tries to require tests
that execute the "most complex” parts
of a software system, as measured by
the decisional depth of the most
deeply constrained segnent.

This measure requires that each
distinct calling chain from the
topmost module to every other module
in the software system.

This measure tries to capture “one
test for each different equivalence
class of invocation input,” a kind of
inter-modular data-exercise measure.

ﬁ

SYSTEMATIC TEST METHODOLOGIES
BOTTOM-UP TESTING METHODOLOGY

T QAT-44-3)

END
YES
NO
NORMAL
SYSTEM
INPUTS
sysTev |
TESTING [
4
1
1
|
l
§
YES
NO
SPECIAL
TEST
ENVIRONMENT “‘*~\\\\\\ﬁh
SUB-SYSTEM |_
TESTING [
YES
NO
SPECIAL
TEST
ENV IRONMENT
SINGLE
MODULE |«
TESTING

A-831-%

(

SYSTEMATIC TEST METHODOLOGIES

TOP-DOWN TESTING METHODOLOGY

(BEGIN ’

NORMAL
SYSTEM
INPUTS H‘“*
TESTING FOCUS
ON TOPMOST
MODULES
USE STUBS
FOR SUBSID-
IARY MODULES
NO
SPECIAL
TEST e
ENVIRONMENT ~\\\\\\\\\ﬁk
TESTING FOCUS
ON SUB-
‘(’///,,/,/"MODULES
STUBS
'Iﬁl’%l.l NO
YES
1
f
SPECIAL ¥
TEST
ENVIRONMENT \\\“-~*_ SINGLE
MODULE
TESTING
Y
END

QAT-44-4

A-231-¢

COVERAGE ANALYSIS EXAMPLE QAT-50-1

TCAT/C -- EXAMPLE COVERAGE ANALYSIS
ANALYSIS OF A SMALL “C” IMPLEMENTED SOFTWARE SYSTEM

STATISTICS ON “C" SYSTEM TESTED:
15 “C" MoDpuLES
24] SEGMENTS
AVERAGE OF 16,07 SEGMENTS/MODULE
APPROXIMATELY 1500 Lines oF “C” cooe

STATISTICS ON THE SET OF TESTS:
37 SEPARATE TESTS
TEST EFFICIENCY: /.53 SEGMENTS/TEST

LEAST COVERAGE OBTAINED IN ONE TEST: 2.49%
MOST COVERAGE OBTAINED IN ONE TEST: 70.12%
AVERAGE COVERAGE PER TEST: _50%
INITIAL C] vALUE: 26.51%
FINAL Cl vALUE: 94,197
LEAST INVOKED MODULES: é TIME (% MODULE)
MOST INVOKED MODULES: 906 TiMES (2 MODULES)
LEAST TESTED MODULE: "UPDATE"” WITH 76.47%
(3 INVOCATIONS)
MOST TESTED MODULE: "GgyDATA" wiTH 100.00%
(é INVOCATIONS,
EGMENTS .
0546 SEGMENT HITS)

RESEAREH

O O

‘ COVERAGE ANALYSIS EXAMPLE QAT-50-2

‘ RESULTS AFTER TEST NO. 1

TCAT Coverage AnALYZER, COVER Version 1,8 (20 CoLumn)
(c) CopyrIGHT 1980 BY SOFTWARE RESEARCH ASSOCIATES

No., 0 No. O
MopuLEe Numeer OF [No, Of SgGMEETS C1Z | No. Of SEGMEETS Cl%
NAME ¢ SEGMENTS: | Invokes HiT Cover | Invokes Hit CoVER |

MAIN
MY_FOPEN
BUTLDTBL
READCOM
ENTERDATA
GENDATA
LOOKUP
PRINTNUM
| RANGE
1TOA
REVERSE

| GENRAND
TOUCHF ILE
UPDATE |
I FiLECOPY

=

RN IO

\ZAS
O OO IO

\n—

M
W ol It N 1 |
AN
sttt) s N A T

(mple o Wp B =tole Wy NN
OOOOOOOOTNCON IO O

OO
CNOOT OO\

O OO OO IO O—

™D
Lo o i |
N
e e i |
N

O TIEDNI LI NN

OOOOOOISNOOWNIOOYTSW

OO ODTHOTN
QOO IO

OO

CURRENT TEST MESSAGE (SAVED IN ARCHIVE):

RunTIMeVeErsTon]. 2. LAST uPDATED ON 6-12-84 (SOFTWARE

RESEARCHS

Q O

f

COVERAGE ANALYSIS EXAMPLE QAT-50-3

RESULTS AFTER TEST NO. 10

TCAT Coverace Anatyzer, COVER Version 1,8 (80 CoLumn)
(¢) CopyriGHT 1985 By SOFTWARE RESEARCH ASSOCIATES

et e e e e e e e e e e 8 o e e e 1 o e o 7 +

[I THis TesT I CumuLaTtive Summary

¥ Fomm o s S e Fommmm Vo or 1
MopuLE NumMBer OF { No., Or SgéMEgTS ClZ 1 No. OF SgéMENTS Cl7

! NAME : SEeMENTS: | Invokes HiT Cover INVOEES_ Hit CoveR I
MAIN 48 |] 3 6.25 }0 19 29,58 |
MY_FOPE? 55 : 1 3? 48.00 | / qg 89.09
BUILDTR] . .
READCOM E 7% g 1§g.§§ t 31§ g l§?.§0
ENTERDATA . .
GENDATA %% 8 0 0.00 EB BE 86.8%
LOOKUP 5 0 0,00 | 5% 100,00
;iéNTNUM 2% () 0 0,00] 5% 18 82,89

GE . .

ITOA / 8 8 8.88 7211 E 9?.89
REVERSE 3 () 0 (0,00 211 2 100,00 |
GENRAND 5 0 () 0.00 0 0] 0,00
TOUCHF ILE ;] 0 0 0.08 0 8 0.08
UPDATE | 0 (0.0 0) 0.0

] FiLcoey st e e et o 0 e

i_zgzﬁLs 241 1 76 45 18,67 T 993 156 63:Z§_l

CURRENT TEST MESSAGE (SAVED IN ARCHIVE):

‘ RuntimeVersionl,?2, LAST UPDATED oN 6-12-84

O O

(’- COVERAGE ANALYSIS EXAMPLE QAT-50-4

RESULTS AFTER TEST NO. 20

TCAT CoveraGe AnaLyzer, COVER Version 1,8 (80 CoLumn)
(c) CopYRIGHT 1984 BY SOFTWARE RESEARCH ASSOCIATES

No. Of No. OF
MopuLE Numper OF | No, OF Seements C1% I No. O SeeMents (1%
NAME : SeGMENTS: | Invoxkes HiIT over | Invoxes Hit OVER

MATN 43
MY_FOPEN 5
| BUTLDTBL 5%
READCOM
ENTERDATA %%
GENDATA
LOOKUP 5
PRINTNUM 9
RANGE 2;
[1TOA
REVERSE g
/
3

g

D

(o))
W
SOOI
-

NI

OOOOWNS OO ot O\

L

[—
—

OOHOCITHOCHTXLOO0L | ¢
O OOOOOMNICH D — O O —

y—
OO0 CO™LER AN | Y

OOOOO OIS bt O = (O
=t OO OQCONATT—A N
OOV TANCOMNILONICOXD
)

~I~
OO B IV I D T Wt N Ot

[——
o x\Val

GENRAND
TOUCHF ILE
] uppaTE 1
FILECOPY

+
l ToTALS 281 T 200 132 54,77 1 2038 173 71.78 1

OO N THDNICD AT
DI N AR
O O DGO NOO IO

COOOTNNSIANOO
OO OO OO

CURRENT TEST MESSAGE (SAVED IN ARCHIVE):

RunTimeVerstonl.2, LAST UPDATED oN 6-12-8%4 (SOFTWARE) y

Ed

RESEARCH

O O

- I

COVERAGE ANALYSIS EXAMPLE QAT-50-5

RESULTS AFTER TEST NO, 32

TCAT Coverace AnALYzer, COVER Version 1,8 (20 CoLumn)
(c) CoPYRIGHT 1985 BY SOFTWARE RESEARCH SSOCTATES

. 0 No. O
MobuLE Numeer OF | No. Of SSGMEETS CIZ I No. OF SgGMEETS Cl%
NAME ; SeeMeENTS: | Invokes HiT over I Invoxkes Hrt Cover

MAIN
MY_FOPEN
BUTLDTBL
[READCOM
] ENTERDATA
GENDATA
LOOKUP
PRINTNUM
RANGE
I 1704
REVERSE
GENRAND
| TOUCHF ILE
UPDATE I
[FiLECOPY

=
NS
-

3

AN U
£
OO0 =
\Sa
OOLOVTIAII NN

(W]
CDOOODLNOU‘!

™D
AANSBTT TN ST I OISO U 100
— N
=t LK D it P et O
— ()

ot et
NN TN 0O

]

OO™NDNCOCO™IS0CoCocOT | Y

OTN IO OO NN OO
O =0

NN O OO

(VLIS o N T ko 1o Ml (e ISl T] S TR
e,

ONOTOOOOOOONIOTNITO0

R Y VeV Y Ve

—
AN UL

I e . - LA A
et e T g

CURRENT TEST MESSAGE (SAVED IN ARCHIVE):
RuntimeVeErsionl.2, LAST UPDATED onN 6-172-84

@

("”

&

COVERAGE ANALYSIS EXAMPLE QAT-50-6

GRAPH OF OVERALL RESULTS

C1L 9,
!U\'{.% T 3 T T T T T TYTYrFrTTTTON
2 4 “'}fm’* G ctiue G aeh)
/u A 3 it A—é&:—&*ﬁ‘- . M/é.ﬁ/ / T’E‘,ﬁf‘jﬁ .
WUGL
g rrTT Tyt 7 T T Mﬂ“‘ﬂ/ a
A
P s g B BB AT 200 portest
o | .-G/j ﬁ'(/(t Cumu.(whuv{\
] 5 O & @\ LLod
5D //KEK@ Q\ f
4o ¢ L
Yo 1 L L
L L L N
P+
o +
L - L Lt oL r L L1
e e e T R ~ E e T o o
')F |6 lr 0 ‘[f () ’T(’__f{‘

RESERRCH

Q@ O O

SY STEMATIC TEST METHODOLOGIES : o OAT-80-3
‘ Cl GRAPH OF FM

190
90
80+
707
60~
50 -
40 -
30-
R x Cumulative System Cl Coveraye
A System Cl Coverage
©® Cl Coverage
D Cumulative S0 Coverage
& 80 Coverage
T T T T ¥ T Y T T T | T T] 1 I 1 i o
5 10 15 20
NUMBER OF TBST (SOFTWARE\ y

RESEAREH

QO O

— —

NUMBER OF DEFPECTS VS. BRANCH COVERAGE

AT-48 -13

Source:

Beifer, 5th Annual Pacific Northwest Software Quality,

w
fon
=
(SN w]
5E
.21230
280\
B N N No. OF UNCHECKED
" COMDITIONS (TARGET)
e OECKED 9ih
o NCHE
§ . lc'oﬁl:n'r:cms 78\
N {ACTUAL) \\
= “ 160 N\
. \
2 - 10 N
i CUMULATIVE BUGS EXPECTED
60+ - 116 /5
5o 100 90\ ----- P
40 - - /: - 72 U5 CuMULATIVE DUGS FOUND
-~ N
301 5 -1
20 oy 2 0 &0 ADDIT:ONAL CHECK
o n - CONDITIONS
’,/ﬁ 4 BACKLOG OF BUGS 26 :
=] 27 EM ¢
=]
T Y T | Y Y o = TiME
t1 12730 15 11 15 21 25 31 10 l‘l 25

O

' CASE STUDIES

QAT-48-7

C1 ANALYSIS OF
SMALL COBOL PROGRAM

o BACKGROUND FACTS
= 2391 lines of text
* 767 sentences
= 371 segments
~ Initial coverage achieved: 63% C1
~ Final coverage achieved: 87.1% C1

°© QA METHODOLOGY USED
~ Search for tests for untested segments.
~ |ldentify defects after each test.
= Rerun tests upon correction of defect.
» Minimal formal recordkeeping.

o PRIOR HISTORY OF COBOL PROGRAM
= Less than six months operational use
~ Some defects found in operational use
~ Need for higher quality

¢ RESULTS
= Defect discovery rate:

— 1.3% of lines of text
— 3.91% of sentences

= Total defects found: 30
» Untested segments: 6
» Cost estimate: %40-60/defect

—

SOFTWARE

ﬂ

fCASE STUDIES QAT-48-8

e ———

TYPICAL ACTIVITY BASED ON
HIGH COVERAGE USING JAVS

o PILOT PROJECT:

To apply existing (prototype) tools and related Quality
Assurance methodology to practical problem.

o BACKGROUND

Central Flow Control (CFC) Software for FAA written in
JOVIAL/J2 Dialect

= Approximately 23,700 statements processed.
~ 98+ % C1 coverage attained.

~ Three stages of software evaluation: Unit testing
level, subsystem testing level, and
system/acceptance testing level.

o RESULTS

» 3.57% NCSS unit testing errors

~ 0.26% NCSS subsystem testing errors

» 0.08% NCSS system testing errors

« 3.91% NCSS overall deficiency discovery rate

REFERENCE: P. C. Belford, R. A. Berg, and T. L. Hannan, “Centrai Flow Con-
trol Software Development: A Case Study of the Effectiveness of Software
Engineering Techniques,” Proc. 71979 int'l. Conference on Software Engineer-
ing, September 1979.

j

[CASE STUDIES QAT-48-1 N\

DYNAMIC TESTING —
C1 BASED APPROACH

e GOAL: Thorough Exercise of Program(s)

NOTE: C1 is defined as the percentage of logical segments in a program
that are exercised by any one test. The normal goal is to achieve an aggre-
gate value of 100% C1 over a series of tests. 85% C1 is sometimes accept-
able in practice for various technical reasons.

° MECHANISM: Integrated, Automated Testbed (Test Harness)
to Support Major Bookkeeping Functions Needed by
Software Test Engineer

NOTE: Typical systems have been built to include the functions listed
below:

» Automatic C1 coverage analysis

O I = Assistance in setting input values and evaluating output values
» Centralized statistics gathering for muitiple tests
» Some form of results comparison (automated)

l e SOME GUIDELINE FACTS
~ Number of Segments is approximately 25% of KLOC.

* No more than one test per Segment is normally required, with
typically 2 - 8 Segments "retired” per test.

~ 85% C1 level is relatively easy to achieve, 100% C1 may require
some "exceptions".

~ Most "off-the-assembly-line" programs achieve between 25 - 50%
C1 coverage.

REFERENCE: E. F. Miller and W. E. Howden, "Software Testing and Validation Methods, "
IEEE Computer Society, September 1978,

O

t CASE STUDIES

SUMMARY OF OPERATION
OF TESTING FACTORY
Quantity l Total/Average
I Modules 128
Statements 60881
Segments 4378
Test Cases Used 1544
Coverage Attained 88.7%
Code Violations 1296
H Program Errors 190
Total Discrepancy Reports 1486
Statements/Error 40.96
F Error Rate (/Statement) 2.44%

QAT-48-6 \

()

S-TCAT AMALYSIS OF TESTS

S-TCAT/C -- EXAMPLE COVERASE ANALYSIS

! STATISTICS oM “C” SYSTEM TESTEDN:
15 “C” MopuLrs
65 cALL-PAIDS

STATISTICS NN THE SET OF TESTS:

356 SEPAPATE TESTS

| SYSTEM AND INTEPFACE ANALYSIS OF A “C" SOFTWARE SYSTEM
METRIC USED: Sl (7 oF POSSIBLE CALL~PAI®S EXERCISED)

AVERAGE OF 4,33 CALL-PAIRS/MONULE
APPROXIMATELY J500 Linges oF “C” cope

TEST EFFICIENCY: 1.%] caALL-pAT®S/TEST

LEAST S1 COVEPAGE OBTAINED IN ONE TEST: 6,007
MOST Sl COVERAGE OBTAINED IN ONE TEST: 67 697
INITIAL S1 vaLUE: 41,677
' FINAL S]1 vaLUE: 86.,15%
 §
LEAST INVOKED MODULES:] TIMe (2 mODULES)

MOST INVOKED MODULES: 1128 TiMES (2 mMopuLes)
AVERAGE NIIMBER OF INVOKES/TEST:

| 3

QAT~-53-1]

267 .8

RESEARCH

O

O

O

f'-—

S-TCAT: ANALYSIS OF TESTS

List of blocked

H-TCATAU does NOT imstrument for this nsme.

short

ahe

aggart

stof stoi

tourrer Lol ower

ctimm

isglrha 1 surerar
isrunct

cuae~§id

ecvt fovi govt

axih

ek 1asl
felose FFflush
feof ferror
floor ceil
foran freoren
frread furitem
{1 T et
fomak Ftall
deto getchar
Hateny

fatdirent
detlodin

gatort

datruwent
Hats
13tol
todname
nalloc
mh bame
manitor

fdate
1to13

rezlloc

nlist

e ror

Frintf ferintf
Futc frutc

locettine

function nem=s. Whsen &

atol
toureens Lo o
Imbtime asctime
islowser iscdisgit iexdizgit
fsrrint isdrarh iscntbtrl

B O st
¢ learerr
F el
{fetaran

filtenc
g

et f
e i
et ghetu

datdrnsmn setdirant

detrwitic et P wnsmn

calloc

serintf
Futu

QAT-53-8

sEraps i bhice File

toaacii

isalnum issrace

aernzrent

satewent

ancrwent

S-TCAT ANALYSIS OF TESTS QAT-53-2

RESULTS AFTER TEST NO.]

5-TCAT Coveressse Ansluzer. SCOVER Vercion 1.8% (80 Column)
() Coruridht 1985 by Softwars Resmarch Associsztes

S re e reensem et e i AL st i L s ik s it) Otk 4004 1 1080 b ek S e ren s D90 AR D BB Sk ek T it e bt A GALE a4 RS ook i) meve S04 B5ES SHE PR ERE e e TR A S e ot KA MR Nkt 4R 4ot S b td e e meoe Sore $ere ot Srre o mtr e e i g s o

I i This Tast I Cumilative Summary I
.'. .‘- B N e R T L T Qe vr P A — .'- R e L BT B AR mAL SR MAR AL IR E L e debd med mry gees ags HOT AEE e mRAr R wEn .'.
I I No. Of I No.o Of I
I Module Number- 0Ff I Na. 0OF Functions 81%¥ I No. Of Functions 1% I
I Nape: Fri Calls: I Invokas Hit Cover I TnvonP Hit Covar I
4{. AR TN iy e s A8 S S SRS GAR MEL Ahs WS B bmb) e edl ma et Al RS AR T ANE MID brn HaE PV A MAS RAE B M Sl bewd sest Mes Mes Met TR WS SHEE SREP W AR R WLES S B 4 debd HE ik mee s ey e prns SA0 W T A s ary Gags s s
I nain 24 1 ¢ Ih .62
I mu.foren 0 ey 0o 100, 00
I buildthl 11 1 & 54,95
I readocom i 0 100.00
I enterdsats 71 2 40,00
1 gendata i1 2 40, 00
I tookur 11 1 10G.00
I printnum it { 100. 040

B etk T 1

1 9 34.62
2 O 100,00
1 94 .55
1 100.00
71 44 .00
11 441,00
11 100.00
i1 100.00

O Lo

Yand joot beed o Yend i ek i
fud bt Ped G B fef id
QMO

Teed fed Fi bl ek Sy bef et

+m““nmm““mm“mmm““mmuwmu___”n__,nn_mm_umwﬂw___wwmmmm__“wwmwmum“_wu“m“mw"rmmuum__+
I Totals 48 1 109 20 41.467 1 109 20 41.67 1
e 4ot nm et 0 0040 2 P40 G404 L0041t e le 4000 (e S e gy ey o P Bowe P AP 00 FE VD BEER e S0AR S0 vsd 4418 rebe H4mm e e SagR TR 10 Lo T SRR el A28 T4 188 BUIR 48 Sesd K Bidm feon mémk o $i7e 4008 F1ou S0P 5 = mepe A1 Them At Am Sekn Sees FE00 Abet St BEHE 100 Shut o [EETE 3

Current test mneccede (saved in archive):

t

(SOFTWARE) y

RESEAREE]

S-TCAT ANALYSIS OF TESTS aaT-53-6

RESULTS AFTER TEST NO. 36

8~TCAT Coversade Ansluzer. SCOVER Version 1.85% (80 Column)
() Corgrisht 1985 be Software Reseasrch Associates

et et e st s s e 4 ks ottt S G B bt Bt Rt 18 A4 e e e e e R A P 1 A 0 4 4 L1 e o e et o e i St Bt ot ot st s e
I I This Tast I Cunulative Summasry I
4 o st e s e et e s b 00ttt s e o e et e o D 8 B AR o o e o s e £ et e oy e et s e e e
I I No. OFf I No. OFf i
I Module Number OFf I HNa. OFf Functiong 81X 1 No. OF Functions §1% 1
I Neme:? Fin Calls: I Invokes Hit Cover I Invokes Hit CGover T
e et etttk o k18 s st 8t S U S T 8 1 A8k it e 7 St o St 0 oS e s s a0 e o et e s
I mzin 26 1 1 13 $0.00 I 34 19 73.08 I
I mue.foren 01 4 0 ia0.00 I 74 0 ion.oo 1
I buildthl b i 10 20.91 I 35 11 106.00 1
I readcom 0 I 2 fl 100.00 7 3 4] 100,00 1
I enterdats 5 I 21 g 106.00 1T 1005 9 100.00 1
1 gendsts 51 i1 4 g0.00 1 190 o 100.00 1
I lookur 11 9 i 100.00 I 148 1 100.00 I
I printnum 01 9 tH 100,00 1 165 0 100.00 I
I rande a1 1 0 100,00 1 54 0 100,00 1
I itos 113 i1 i pG.0o0 1 1139 i 100.00 1
I ravarss 11 11 1 100.060 I 1139 1 100.00 1
1 sernrand 4 1 0 £ 0.00 1 22 4 106.00 1
I touchtfile 21 1 0 g.00 I 5 0 Q.00 I
I urdste &I 0 1} Q.00 I 1 & .00 1
I filacory 21 4] 0 Q.00 1 1 3 160.00 1
M et e s et i b et s 1 1 s iR Pt e S 8 10t ke e S0t RS BVE B Bk 4R 8 4 440 AL S ek e e ey 4k o8 e s S8 A8 18 18 B4 And ok ek g st e SR AP A o e S A 88 B89 RHE et Shre o mers mre s o v +
I Tatals 65 1 g2 A5 B3.85 1 4109 5é 86.1% 1

B e e e s s s 2t Gt s 18 Bt iy ey rrd e e e P T S PR T S BT S48 18 et Bk i e e e e e e et 1 78 1 D R e e &

Curraent test messada (saved in archive)?

t

ﬁ R ——— —m
S-TCAT ANALYSIS OF TESTS QAT-53-7
GRAPH OF OVERALL S1 COVERAGE RESHLTS

S4
! 1T
o7,
GO
LT |
d@w@aééwéﬁa‘@@@
oot |
2%, T
?\Jagg_:rv
ek
J | , '
(O 70 %> o
SOFTWARE

RESEARCH

(

EFFICIENT ORGANIZATION OF TESTS QAT-52-2

EXAMPLE COMPUTATION

ORIGINAL SITUATION
32 TESTS FOrR 15 MODULES oF “C”
TOTAL LENGTH APPROXIMATELY 1500 LINES
cumuLaTive Cl = 91,57% FROM 32 TESTS
AUTOMATED TEST RE-PUN CAPABILITY EXISTS

INDIVIDUAL TEST COVERAGE RANGE:
tow: (I 2.39%
69.08%

HIicH: (Il

TEST SELECTION METHOD
CHOOSE HIGHEST C! TEST FIRrsST
COMPUTE ALL 2ND TEST Cl coNTRIBUTION
CHOOSE HIGHEST-CONTRIBUTION 2ND TEST
REPEAT FOR 3RD TEST., 4TH TEST., ETC,

IN CASE OF MULTIPLE CHOICES CHDOSE FIRST
OCCURING INSTANCE (ARBITRARY ORDER)

CONTINUE UNTIL MAXIMUM COVERAGE 1S ACHIEVED

SOFTWARE
RESEARECH

r — N N ———

EFFICIENT ORGANIZATION OF TESTS

DERIVED EFFICIENT TEST ORDER

e il N pp———

OLp New
Orper OrpER

et At —— —th e —

TEST-29
TEST-20
TEST-27
TEST-52
TEST-6
TEST-]3
TEST-

TEST~1?
TEST-28
TEST~

TEST-{

TEST-10
TEST-

TEST-

TEST-1b
TEST-1/
TEST-18
TEST-%Q
TEST- %
TEST-

TEST-24
TEST-25

. — e — ————_—— s e ks

NI POttt bttt bt s — (OO TN T T N O —

A= CH OGO NI TS AN I— O

)

QAT-52-3 '

ES()FTT\fV¥\FﬂE

O

O

EFFICIENT ORGANIZATION OF TESTS QAT-52-5
TCAT Coveradgs Anslurzar. COVER Version 1.8 (80 Coltumn)
() Corpuridht 1984 bu Softwsre Resaarch Associates
.‘........,.._.................-..._._.--.—.-—‘-—-.--‘....-......m..-.........-...-..-......-.-.-...............-......-....--..-—-—-m_-_._._-_-u-«-.u--------m-.------..........-...-.-.4.
I I This Tast I Cumulative Summarw I
+ -{---.-u-«--u-»«-u.m-.---.-u-»---u.....-...........-......—.._..‘........—.—-—.—n.._.._._“.__..-.....m...'.
i I No. Of I No. OF I
I fModule Numher 0Ff I No. Of Sednents C1XZ I No. OFf Sedments C14 1
I Hamas? Sadnante?r I Invokes Hit Cover I Invokss Hit Cover I
.'.................._..._._....................................._............................,....-..-.,_...._._...._..,__......._......_...................‘.
I main a2 I i 27 S1.92 1 1 a7 51.92 1
I mu.foraen oI 7 2 40,00 1 7 2 40.00 1
I buildtbhl =25 1 i 47 85.45 1 1 A7 03%.45 1
1 readcom 91 2 4 a0.00 I 2 4 80.00 1
I enteardates 11 I 21 ¥4 81.82 1 31 9 81.82 1
I dendsts 42 1 11 30 71.43 1 i1 30 71.43 1
I lookur 51 9 4 20.00 I ? 4 80.00 I
I erintnumn ?1 @ g8 g88.89 1 @ a g8.89 1
I rande 25 I 1 17 &8,00 I 1 17 48,00 1
1 itos 7 1 11 5 71.43 1 11 £ 71.43 1 I
I revarss 31 i1 3 100.00 ¥ i1 3 100.00 I
1 s#enrand 5 1 0 0 .00 I 0 (] 0.00 1
I touchfils 31 Q) 0.00 1) 0 0.00 I
I urdats 17 1 1 13 74.47 1 i 13 74,47 1
1 filucory ' 31 1 3 100.00 I 1 2 100,00 I
o et e om vt s v e 7 £ e A8 0 i i S e kP O S K 8 P T o R o e i 4 4 A8 S0 R A D A8 P e Y o S £ S e St ke it i Bt s s s o e e

I Totals 249 1 24 172 69.08 1 R&

172 69.08 I

Wl v o oo ks oo s Ay vt e i 441 b S48 B LA TR S AR AR S SR O AR P SO FLIF Ry T b AR k08 s bt 8400 Ml Ml S8 Bt A8 AL L e ent I S AL S Ao 000 SE AL L S S S e g ekl o o ML 0 4 ik st 28 o s I

Current test maesssde (saved in archive):

RuntinmeVersionl.?2. Last urdetad on 4-12-84

(SOFTWARE)
RESELREE

O

O O

. R

EFFICIENT ORGANIZATION OF TESTS QAT-52-8

TCAT Covereade Ansluzer. COVER Versiom 1.8 (BO Colusm)
(c) Coruridht 1984 by Software Resesrch Associates

o s e et e e i e Bk SR AR 0 O S0 S 0 840 A b Bt S D kL A 0 e SR8 AR i S0 SAD AL S 80 SHED AT D i Rk 8 Ak ek AU U0 e 2 SCE AR el SR S0 K0 180 A AR SEE O B4 A8 S4B 000 i 0 4 ik e b e b o

1 I This Tast I Cumulative Summary I
+ o D o O T o0) o 3 20 0 S 7 020 S0 73620 20 3 - 0 e 0 0 e e o e 0 0 00 D D e £ e £ o oened
I I No. OFf I No. OF I
I Module Number O0f I No. Of Sezdments C1¥ 1 No. Of Sedgments C1X I
I Nemm? Seduasntst I Invokes Hit Cover I Invokes Hit Cover I
< o D T e 3 e e 3D 20 T T 1 -T2 5 I 2 0 5 51 0 DD 10 50 53 7 5 0 £ e) o T D D 3 XD) 0) 2 0 521) 1)) S o e e e b
I main 52 1 1 3 H.77 1 22 45 Ha.04 T
I mu.foren 51 i 2 40.00 1 44 4 80.00 1
I buildikl 59 1 1 37 &7 .27 1 21 53 P65.34 1
I resdecom 5 1 5 4 gn.oo 1 &1 % i00.00 1
I entatrdats 11 1 14 o #81.482 1 628 9 g81.82 1
I gendats 42 3 0 0 0.00 1 80 422 i00.00 1
I loohur 51 G) 0.00 1 70 5 100.00 1
I Frintnun g 1 0 0 0.00 1 &8 97 100,00 1
I rande 25 I 2 18 72.00 1 iy 25 100.00 I
I itos 71 70 7 100.00 1 418 7 100.00 X
I raeverse 31 70 3 1600.00 1 618 3 100,00 1
I #sternrand & 1 G] 0.00 1 ig 5 100.08 1
I touchfils 51 o 0 0.00 1 0 0 0.00 1
I urdate 17 I 0) .00 I p 13 7h.47 1
I filecorw 21 1] 0 g.00 I 2 3 100.00 1
€ o £ I DD D B 6 D] F) e e oD eI D CIe 70 s G20 G 3D 2 D 3 o 0 0 0D D 0 E 0 0 S e S D e e D e e e enem g 3
I Tatals 249 1 144 83 33.33 1 2271 228 91.57 1
5 DD = 7 DD I e 5 eI 20 P D o T D D o D 0 2 0 20 0 63 D0) D e 0 58 7) B 20 1) 25 200 7 20 0 27 G D e G0 e Co ED e en e e

Curraent teset messadge (saved in archivel:?

RuntimeVersionl.2. Last uedated on 6-12-84

O O O

f EFFICIENT ORGANIZATION OF TESTS QAT-52-9

f/bd J ,!}?
" loaT (KL\
MV‘!L'!C("?J "0
D00
e BGY o000 0P

o0 0—6 -0

’ C’%”T ARGANAR0 D ENN Y

i1 7 3% 4 g' T Lo Y 72 Uu.u»v{cfu

(SOFTWARE\)

QAT-52-4

A

EFFICIENT ORGANIZATION OF TESTS

(..

O

..III.T?I..TI-TF — 3 ey = it o
1 1 I } I i
| I | COOOIMPE = L NALN | LOLALALOUOOEOUD | (O |
“ “ bg " LALLM “ —LNOMN S —LN I “ il “
S e B N T Y B - -
H | | (S I OO —ONIN S L OO) PO OCEITNONEED 1 i 1
1 | “ “ O 00000000000 0O “ OO0 COCICVOOT N “ [ayiay "
| st
| w I |) I I
¥ 18] | 1 1 I 1
1 (2’ I w i | I |
g
] |] 1 1 1 1
w 1 «T] w i I 1 1
| | - 1 [LE} 1 | 1 1
=] = 1 2 I 1 | i
w i = 1 (=] 1 LOLOOMNONION S LD P QO OMTI GO | Pt |
=] =) > P OO S LNOT 3 ONooLN | 97—;37/24039 []
[z I O 1 = t CNNYETLALOENLOC | —IOAINIMSSOOITIE | —0N |
ni I 1 bt | t—t | redem—ie— tr—dpntr=de—ICN] | CSICN]
[72] 1 I | 1 1 H
1 |] } i |
@ 4 + o+ - — — + ——
[¥p) = 1 1] 1 | I
— N |] I SOOI LOL Mt | MO CONILO—IT | NN)
% “ " B “ COOONMONLNA S OO “ P OMYCNILNALAMN O — “ Oy “
F T B T P R A s - -
— < | I 1 MNP OOPCOONNYNGS PACOMI SN OO | PP |
I 1) 1 FLOLOAMNWLONNY NWOAY—] 3.'.?)230/—()30/—4/ LY
=] | - | I i | |
[EN] <L] (72 i I | | 1
[’ e 1] Ll I | 1 ! i
Lol (@] I — 1 [} 1 | i 1
o | I f [and I ON=MNOVY— LD SO | SLANYCOLS—ONOOH | ONNY
o 1 — [— I BNOWSOYCT oot | SO OANCAUOCOOI00 | =00 |
o ! <L | bow g | —ie—t — —i | I — |
Lt] 0] 1 t 1 1
o I (] 1 1 1 1 1
1 —] w I I i {
LL, | - i (1N} | | | |
O) Lo] =] [} I]
1 [1 (o] 1 OO NVOMCNNSTLY OO LA | o]
[NW] I = I - I OO~ coLnNY OGN | P COCNSIONOPMCSNLN | OOWD |}
= I —] =] o = I MY I
[i I — 1 I 1 |
o } { | I 1] | 1
() I I ! H I]
4 gt e — — of ——y malan B &+ b—
(XN | i |] I
LD 1] I I i |
L i - I] I |
o | v - | P OO 00TICD } =AM LOOM OO | —i0N!)
[TE] 1 [TIN =) H i] At e (] | [N (i NI
— | | ——] i 1 1
(] 1 i I 4 {
[S et o by — ot e A —ip et - el u
N — —————
———

GYSTEMATlc TEST METHODOLOGIES QAT-U4-10

GENERIC SYSTEM-LEVEL TESTING PLANS

Very often certain kinds of system characteristics can form the basis of a
systematic approach to system test planning.

These categories represent some extremes that may be encountered.

o VERTICAL SYSTEM
~ Deep Interconnection Diagram
» Strong Bottom-Up Dependence
i = Use Bottom-Up Testing

o HORIZONTAL SYSTEM

» Flat Interconnection Structure
= Primary Top-Down Dependence
~ Use Top-Down Testing

l o PARTIALLY IMPLEMENTED SYSTEMS
~ Bottom-Up Implementation

= Top-Down Implementation
J = Mixed Implementation

™\

f”

APPLIED SOFTWARE TESTING

APPLTED SOFTWARE TESTING ~- CASE STUDY DESCRIPTIONS

CASE STUDY FOCUS:

TYPICAL SITUATIONS

BEST INDUSTRIAL-STPENGTH METHODOLOGY
AUTOMATION OF FUNCTION

HIGH QUALITY

PPODUCTIVITY GAINS THROUGH:

CLASSES

INCREASED RATE OF PRODUCTION
LOWFR COSTS TO DFTFCT DEFECTS
RETTER AND LOWEP-COST FIITURE TESTING

OF CASE STUDIES
TEST SUITE DEVELOPMENT
COMPREHENSIVE PRODUCT TESTING

DETAILED TECHNICAL TESTING
VALIDATION TESTING

sr-91-1

sr-91-2

APPLIED SOFTWARE TESTING
CASE STUDY ORGANIZATION
TEST SUITE DEVELOPMENT

INTEPPRET FUNCTIONAL SPECIFICATIONS
ACCOUNT Fonr PASS/FAIL raTIOS

AUTOMATIC APPLICATION

COMPREHENSIVE PRODUCT TESTING

DESIGN FUNCTIOMAL TESTS

CHECK TEST MATPIY
BUILD & APPLY TESTS
REPORT DEFECTS

DETAILED TECHNICAL TESTING

EXPLOIT PROPERTIES OF PRODUCT
DEFFCT-PPONE MODULF IDENTIFICATION

VALIDATION TESTING

INSPECTION
FUNCTIONAL TESTING

CONVERGENCE TESTING
PEGRESSION TESTING

O O

(-

APPLIED SOFTWARE TESTING sr-91-Al

CASE STUDY A -- DEVELOP PROGRAMMING ENVIRONMENT TEST SUITE (REF #0890)

SITUATION:
NEW PROGRAMMING EMNVIPONMENT
FORMAL SPECIFICATION EXISTS

REQUIREMENT :
FULL-VALIDATION STYLE TEST SUITE
LIMITED SUBSET OF FUNCTIONS
KERNEL FUNCTIONS NEED MAIN ATTENTION

CONTEXT:
NON-STANDARD HARDWARE
NON-STANDARD LANGUAGE
INTERNATIONAL CLIENT

(SOFTWARE)

y,

RESEARCH!

APPLIED SOFTWAPE TESTING
METHODOLOGY USED

TEST PLANNING:
FUNCTIONAL SPECIFICATION ANALYSIS
1007 AUTOMATED TEST CONTROL PROGRAM

TEST PROPERTIES:
SELF-CHECKING TEST FORMAT
MANUAL VALIDATION TO SPECIFICATION

SPECIAL FEATURES:
STANRARD PASS/FAIL »EpoRTING
STANDARD ACCOUNTING

sr-9]1-A2

—

L

APPLIED SOFTWARE TESTING sr-G1-A3

RESULTS ACHIEVED

PRODUCT :
157 TEST PROGRAMS
471 1EsTS
175 COMMANDS, CALLS, DRIVES, FUNCTIONS TESTED
AUTOMATED TEST FXECUTOR
AUTOMATED RESHLTS REPORTING

APPLLICATION:
APPROX, 24 MEFECTS DETECTED
APPROX, 40 HRS TEST EXECUTION TIME
TESTS REQUIR® MANUAL VALIDATION
8 HRS FOR RE-EXECUTION
cosT/neFecT: $1K (assuMmes NO vALUE For SYSTEM)

RE-APPLICATION
MAJOR SYSTEM IMPROVEMENTS ORSERVED
ONLY MINOR NEW DEFECTS FOUND

SOFTWARE

—

APPLIED SOFTWARE TESTING sz-91-Bl

CASE STUDY B -- DEVELOP PL/I TEST SUITE (REF #1010)

SITUATION:
! new PL/T comeiier
MULTIPLE HARDWARE SYSTEMS

REQUIREMENT ®
PPE-RELEASE TESTING NEEDED
FULL-VALTIDATION NOT wNeepeED

CONTEXT:
ADVANCED FUNCTION PRODUCT
PRIOR DEFECT-PRONE HISTORY
SHORT SCHEDULE
US cLiENT

SOFTWARE
RESEARCH

h . — —— —

APPLIED SOFTWARE TESTING sr-91-R?

METHODOL.OGY USED

TEST PLANNING:
CAREFUL STUDY OF LANGUAGE SPEr
APPLY “TOUCH TEST” PRINCIPLE

TEST PROPERTIES:

TEST MATRIX DFVELOPED
SMARTS conTroL

SPECTAL FEATURKS:
DEVELOPMENT VERSION OF COMPILER ONLY
ERROR-PRONE ENVIRONMENT

RISSISARCH

()

APPLIED SOFTWARE TESTING s2-9]-B3
RESULTS ACHIEVED

PRODUCT :
165 TEST PROGRAMS

l 2 AUXILIARY FILES

28 TEST SCRIPTS

11,167 vines oF PL/1 cope

164 maseLINE FILES

APPLTICATION:
! 31 DEFECTS DSTEZTED

B-8 HRS TEST EXECUTION TIME

cosT/nerecT: $.5K (assumes NO vaLue ror pRODUCT)
SUBSEQUENT HISTORY:
BASIS FNR coMMERCialL PL/I eropuct

APPILIED SOFTWARE TESTING sz~91-Cl

CASE STUDY € -- TEST ASSEMBILER PRODUCT (REF #095%)

SITHATION:
MAJOR PRODUCT (COMPLETE MACRO ASSEMRLER)

! VERY-GREAT TECHNICAL SOPHISTICATION
MACRO PROCESSOR
MANY USER OPTIONS

SOME INTERNAL TESTING COMPLETED

REQU IREMENT :
1007 FUNCTIONAL COVERAGE IN TESTS
AUTOMATIC NPERATION
CONTINUAL DEFECT REPORTING

CONTEXT:
PC/DOS ENVIRONMENT
STANDARD CPU parT
DOMESTIC CLIENT

SOFTWARE
FESEARCH

APPLIED SOFTWARE TESTING se-9]-C2
METHODOLOGY USED

TEST PLANNING:
BASED ON TECHNICAL MANUAL
COMPREHENSIVE TEST MATRIX

TEST PROPERTIES:
“FLAT" TEST ORGANIZATION
SIMPLE TESTS
MANY OF THEM
MAXIMUM INDEPENDENCE OF TESTS

MECHANIZED CONTROL:
SMARTS BASED REGRESSION
MULTIPLE PC DEVELOPMENT
AUTOMATED COMPARISON REQUIRED

SPECIAL FEATURES:
MANUAL REVIEW COMPLETED
SPECIAL PEGRESSION TECHNIQUES USED
FULL TURNOVER OF TESTS TO CLIENT
FULL TUPNOVER OF BASELINE OUTPUTS TO GLIENT

\ SOFTWARE

T — S——— T A— g

_)

APPLIED SOFTWARE TESTING sr-9]1-(3
RESHLTS ACHIEVED

PRODUCT:
A10 TESTS DEVELOPED
5,800 Lines oF SMARTS conTrROL FILE

I APOLICATION:
150 pETECTS FOUND
3-5 DAYS TFST EXECUTION TIME
cosT/nEFECT: $,5K (assumes NO VvALUE FOR TEST SUITE
| AMD REGRESSION SYSTEM)
RE-APPLICATION:
I MAJOR QUALITY IMPROVEMENT

COMMERCTAL PRODUCT RELEASED

\ SOFTWARE)

RESEQAREH

APPLIED SOFTWARE TESTING sr-91-D1

CASE STUDY D -~ TEST HI-END PUBLISHING PRODUCT (REF #0988)
SITUATION:
HI-END PUBLISHING PRODUCT
SUN WORKSTATION
WINDOWS
MOUSE
KEYBOARD
OBJECT-ORIENTED PROGRAMMING
PEQU IREMENT
AUTOMATIC PEGRESSION TOOL
INITIAL TEST DESIGN
INITIAL TEST DEVELOPMENT
€REATION NF TEST RASELINE
CONTEXT:
DOMESTIC CLIENT
HI-PEPFORMANCE ARCHITECTURE
EXTREMELY SOPHISTICATED PRODUCT

APPLIED SOFTWAPRPE TESTING

METHODOLOGY USED -- TEST SUPPORT TOOL
TEST TOOL PLANNING:
CAPBak DESIGN BASE
DESIGN OF INPUT CAPTURE
KEYBOARD
MOUSE
SUBSCREENS
DESIGN DF REPLAY
AUTOMATED COMPARISON

TOOL PROPERTIES:

HIGHLY INTERACTIVE SYSTEM
SMARTS INTEGRATION

SPECIAL FEATURES:
SCREENSAVE OF SIBWINDOWS
AUTOMATED COMPARISON OF WINDOWS

sr=-91-D2

N

APPLIED SOFTWARE TESTING sr-91-D3
METHODOLOGY USED -- TEST DEVELOPMENT

TEST PLANNING:
BASED ON EXISTING MANUAL TESTS
REORGANIZED FOR MECHANIZED OPERATION

TEST PROPERTIES:
210 TESTS BUILT
650-950 SUBTESTS CONSIDERED
DEPENDS ON DEFINITION OF SUR-TEST
TYPICALLY, “SUB~TEST” = SUR-WINDOW

SPECIAL FEATURES:
FEEDBACK INTO DEFFCT TRACKING
CONNECTTION TO TRAINING DEPARTMENT

~

)

(:) APPLIED SOFTWARE TESTING sr-91-D4
RESULTS ACHIEVED

PRODUCT:

TEST SYSTEM noes 1007 AUTOMATIC TEST REGRESSION

APPLICATION:
27 DEFECTS DETECTED
3-8 DAYS TEST EXECUTION TIME

MANUAL ASSISTANCE AND VALIDATION

I SYSTEM 1S INTERACTIVE
cost/merecT: $2,2K (assum=s NO VALUE ON TEST SUITE

OR REGRESSION SYSTEM)

SOFTWARE
RIESENRICIH

r

CASE STUDY E -- TEST UNIX OPERATING SYSTEM (REF #0877)

SITUATION:
MEW HAPDWAPE RELFASE
PROPRIETARY CPU

SOFTWARE PORT PLUS SPECIAL FEATURES

REQU IREMENT :
VALIDATION OF KERNEL
FUNCTIONALITY
PERFORMANCE
VALIDATION OF SYSTEM PROPERTIES
IDENTIFICATIOM OF USER PRORLEMS

CONTEXT:
DOMESTIC CLIFNT
HI=TECHNOLOGY HARDWAPRE

APPLIED SOFTWARE TESTING sr-9]-F1

N

()

APPLIED SOFTWARE TESTING sr-91-£2

METHODOLOGY USED
TEST PLANNING:
USER DOCUMENTATION AS TEST PLAN BASE

SPECIAL COMPATIRILITY TESTS
ANOTHER XENIX as mase
MANUAL VALIDATIONS

TEST PROPERTIES:

66 TEsTS (182 sumTeESTS) oF kerner tnTeErrace (USVS)

87 1esTs (150 sumTESTS) 0F LImRARY FuNCTIONS (USVL)
141 1esTs (TESTING AR5 SWITCHES oF 195 coMMANDS)
OF UTILITY FuncTions (USVL)

SPECIAL FEATURES:
PART OF 'STANDARD TEST sH1TES’' ror UNIX

COMMERCIAL OFFERING

()

APPLIED SOFTWARE TESTING sr-91-£3 l

RESULTS, ACHTEVED

PRODUCT :

ALl TESTS RUN

2 CONFIGURATIONS
APPLICATION:

31 neFeCTS

cosT/peErFecT: $1K (assumes NO vaLue Fom syitTe)

SOFTWARE
RESEARCH

(B -)

APPLIED SOFTWARE TESTING sr-91-F1
CASE STUDY F -~ TEST XENIX OPERATING SYSTEM (REF #0795B)

SITUATION:
NEW SOFTWARE RELEASE IN EARLY STARES
OF DEVELOPMENT
VARTIQUS HARDWARE CONFIGIRATIONS

REQUIREMENT :
FUNCTIONALITY VERIFICATION
TESTING OF DRIVERS
MULTIPLE REGRESSIONS (ON 5 RELEASES)

CONTEXT:
DOMESTIC CLIENT
MID-TECHNOLOGY HARDWARE

SOFTWARE

APPLIED SOFTWARFE

METHODOLOGY USED

TEST PLANNING:
REUSE OF
SOME NEW

TEST PROPERTIES:

TESTING

EXISTING TEST SUITES

TESTS

NEEDED

107 ToucH TeESTS OF 177 BASE COMMANDS wiTH U449 SwWiTCHES

51 ToucH TESTS OF 56 SOFTWARE DEVELOPMENT SYSTEM

COMMANDS WITH 288 SWITCHES

20 ToucH TESTS nF 31 TEXT PROCESSING COMMANDS WITH

1 FuLL
53 FuLL
10 ruL
100 rFuLL
36 FuLL
20 fFuLL
126 FuLL
12 FuLL
b FuLL
25 =uLL

FULL

FULL
17 rFuLL

107 swiTCHES

TEST n* SysTem InITrALIZATION Cone

TESTS
TESTS
TESTS
TESTS
TESTS
TESTS

ofF CRT

OF KEYBOARD

oF TTY

oF Froppy Disk
of Harp Disk

OF SeR1AL PorTS

(ADDITIONAL) TESTS OF MULTI-PORT BOARD

TESTS
TESTS
TESTS
TESTS
TESTS

OF PARALLEL PORTS
OF CO-PROCESSOR
oF Timer

oF {_bck

oF MMU

APPLIED SOFTWARE TESTING sr-91-F3

RESULTS ACHIEVED

PRODUCT ¢
TESTS RUN ULTIMATLEY ON 5 RELEASES
MANY MACHINE CONFIGURATIONS
DIFFERENT MACHINES

SINGLE-USER

MULTT-USER
LINKED TOSETHER

APPLICATION:
95 ERRORS AND 3 INCIDENTS REPORTED
40+ HRS TEST EXECUTION TIME
cosT/pEFECT: $1K (assumes NO vALUE oN SUTTE)

SOFTWARE
(RESERRCH

APPL_IED SOFTWARE TSSTING sr-91-G1

CASE STUDY G -- TEST PATIENT ORIENTED MEDICA. PRODUCT (REF #0813)

SITUATION:
MEDICAL PRODULT, USED BY PATIENT
MEASURES BLOOD SUGAR
RECORDS INFORMATION OVER TIME
REPORTS TO CENTRAL COMPUTER

REQUTREMENT:
FIUNCTIONAL TESTING
COVERAGE ANALYSIS
REGRESSION TESTS

CONTEXT!
DOMESTIC/ INTERNATIONAL CLIENT
HIGH CRITICALITY (MEDICAL PRODUCT)

SOFTWARE
I

ﬁ —— . -

APPLIED SOFTWARE TESTING sr-91-G2
METHODO!.OGY USED

TEST PLANNING:
TESTS BASED ON FUNCTIONAL SPECS
TESTS ORGANIZED THROUGH TEST MAT21X

i
TEST PROPERTIES:
39 TESTS DEVELNPED: FUNCTIONAL + STRESS
11 CONVERGENCE TESTS
7 SYSTEM CONVERGENCE TESTS
| 52 TOTAL

Cl = 877 acHieveD

SPECIAL FEATURES!:
CAPBAK USED TO RECORD ALL TESTS
MANUAL INITIATION OF REPLAY WITH CApBAy
SoFTwaRE INCIPENT REPORT SYSTEM INSTITUTED

SOFTWARE
RIESEARCH):

(_tp T) A

APPLIZD SOFTWARS TESTING srR-91-G3 I
RESULTS ACHIEVED

PRODUCT:
52 TESTS BUILT., aPoLiED
TESTS PRESERVED ON KEYSAVE FILES FOR
REGRESSIONS AND FOR FuTurs (FDA?) enouIRIiES
CODE AND TESTS UNDER CONFIGURATION CONTRQL
INTERMEDIATE COVERAGE REPDRT FILES CONSERVED FOR
FUTURE ENQUIRIES

APPLICATION:
12 DEFECTS DETECTED
40+ HRS TEST EXECUTION TIME
cosT/peFecT: $2K (assumes NO cosT ForR TEST suiTe,

XEYSAVE FI'ES, CONFIGURATION SYSTEM)

REGRESSION ON NEW VERSION:
7 DEFECTS NOTED
40+ HRS TEST EXECUTION TIME

SEAREH

S — —_—
—

APPLIED SOFTWARE TESTING sr-91-H1
CASE STUDY H -- TEST A MEDICAL PRODUCT (REF #1020)

SITUATION:
h HARDWARE/SOFTWARE PRODUCT
USED FOR QUALITY ANALYSIS OF MEDICAL PRODUCT
H PRODUCES ANALYTIC REPORTS

REQUIREMENT:
i FULL VALIDATION TESTING
COVERAGE ILEVELS SPECIFIED

REGRESSION SYSTEM REQUIRED

CONTEXT:
HIGH CRITICALITY

VALIDATION SYSTEM REQUIRED
’ MODERATE SIZE PRODUCT
|

SOFTWARE)
RESEARGCH]

(

| APPLIED SOFTWARE TESTING

METHODOLOGY USED

INSPECTION:
UNTT-_EVEL INSPECTION
SYSTEM-LEVEL INSPECTION

TEST PLANNING:
FUNCTIONAL TSST PLANNING
SPECIFICATIONS
IN PART FRQOM CODE
AL TESTS UNDER SMARTS conTroL

FUNCTIONAL TESTING:
INITTAL MANUAL TEST VALIDATION
AUTOMATED DIFFERENCING

CONVERGENCE TESTING:®
Cl > 95% rREQUIRED
S1 » 997 requireD

REGRESSION TESTING:
MULTIPLE REGRESSIONS
VALIDATION SYSTEM DEVELQPED

s:-91-H2

RESEAREH

1APPLIED SOFTWARE TESTING sr-01-H3 .

O RESULTS ACHIEVED

PRODUCT !
23 FUNCTIONAL TESTS

| 15 FORMAT AND ERROR TESTS

13 OTHER FUNCTIONAL TESTS

14 cosMETIC TESTS

65 ToTAL

VALIDATION SYSTEM

65 VALIDATED BASELINE FILES

REGRESSINN SysTEM (SMARTS conTroL £1LE)

| PRODUCT ITSELF REQUIRES MANUAL TNTERVENTION

APPLTCATTON:
(:) INSPECTION STAGE
/1 MODULE ANOMALIFS
b5 SYSTEM ANOMALIES
52 ERs
| DYNAMIC TESTING
11 FUNCTIONAL TESTING INCIDENTS
11 CONVERGENCE TESTING INCIDENTS
TOTAL: /4 DEFECTS DETECTED
TEST EXECUTION TIME
R 8-12 HRS WITHOUT PRINTING
36-48 HRS WITH PRINTING
cosT/pEFECT: $.5K (assumes NO vALUE FOR TEST SUITE

REGRESSION SYSTEM, VALIDATION SYSTEM)

SOFTWARE
RIESISANRICH

l RELIABILITY PREDICTION QAT-46~1

RELIABILITY ANALYSIS —
DEFECT REMOVAL PROCESS

o GOAL

Model the current series of defect removal steps, predict rerhaining
defects based on historical experience.

o DEFECT REMOVAL STEPS

(1) Code Inspections/Reviews: Standard IBM-like processing
during software production

(2) Systemn Testing: Pre-release examination by independent
testing group

(3) Field Testing: Users find defect during (atternpted) normal
use of software

o MODEL USED

~ Each step assumed to remove Pi fraction of total numbcer
of original defects.

* Overall effectiveness is (1-P1)(1-P2)...(1-Pi).
o APPROXIMATE VALUES

NOTE: P1, P2, and P3 are “Company Confidential” and highly
dependent on the methodologies and personnel used. Good guess is
Pi = 90% in all cases. This implies overall residual defect rate
approximately 0.01% NCSS.

NOTE: Original defect rate is in 2.0 - 4.0% NCSS range, with 3.0%
the “best guess” value.

o UNANSWERED QUESTIONS
~ Now many remaining defects?

~ How do users feel about assisting in the defect removal
process?

REFERENCE: H. Remus and 8. Zilles, “Prediction and Management of Program Qual-

ity,” Proc. 1979 Int'l. Conference on Software Engineering, Munich, West Germany,
September 1979.

\

t RELIABILITY PREDICTION QAT-46-2

RELIABILITY ANALYSIS —
NEXT ERROR DISCOVERY PREDICTION

o GOAL

Define an error statistic, develop model of error behavior, compute
probability of an error in the future.

H o BASIC METHODS

~ Extension of hardware reliability assessment (application
dependent)

~ Based on analysis of properties of software system itself
(application dependent)

NOTE: Software dependent model discussed later.

° HARDWARE RELIABILITY MODELS

= Constant Error Rate: Does not match reality.

~ Jelinski-Moranda Model: Random error detection, error !
rate proportional to number of remaining faults.

- Schick-Wolverton Model: Same as Jelinski-Moranda,
except error rate proportional also to length of time testing
(equally probable error discovery statistics in testing).

» Shooman Model: Same as Jelinski-Moranda, but includes
* total debugging and total execution time.

* Schneidewind Model: Errors assumed Poisson distri-
buted, mean number of errors detected decreases
exponentially with time {same level of testing com-
petence), error rate proportional to remaining errors.

~ MUSA Model: Errors present and not found are function
of total execution time of program (actual use time).

o PROBLEMS
= Calibration Statistics (Model Validation)
« Inaccuracies in modeling software as "hardware"

REFERENCE: J. C. Rault, "Quantitative Measures for Software Reliability,” infotech
State of the Art Report, 1878.

SOFTWARE

3

(‘

EXPERT SYSTEMS QUALITY CONTROL
TESTING OF EXPERT SYSTEMS

PRINCIPLES OF EXPERT SYSTEMS
USER INPUT/OUTPUT INTERFACE
RULE SET
INFERENCE ENGINE

QUALITY ISSUE IN EXPERT SYSTEMS
POSITIVE FAILURES
INCORRECT RULE
INCORRECT DEDUCTION
| COMBINATION
NEGATIVE FAILURE
OMITTED RULE
MISSING INTERMEDIATE LEMMA

OTHER DEFICIENCY SOURCES
BEFICIENCY IN INFERENCE ENGINE
HARDWARE DEFICIENCY
INSUFFICIENTLY CHECKED HUMAN INPUT
COMBINATION

QAT-92-1

TESTING EXPERT SYSTEMS

EXPERT SYSTEM’S QUALITY ASSESSMENT

FAILURE MODES
USER INPUT ERRORS
INCONSISTENT INPUT FACTS
ERRORS IN RULESET
INCORRECT REDUCTION(S)
TNCORRECT VALIDATIONS

IMPACT OF FAILURE
IMAGE
FIELD REPLACEMENT COST
DAMAGE COMPENSATION
LIABILITY

DEGREE OF DIFFICULTY

l RULESET PROGRAMMING
SYSTEM INTEGRATION
COMPONENT FAILURE MODES

USER TRAINING

QA-93-2

' -)

TESTING EXPERT SYSTEMS QA-93-3

USER INPUT ERRORS.

FATLURE MODS:
USSR TYPES INCORRECTLY
USER “FORGETS” CONTEXT
SIMPLE PILOT ERROR

EXAMPLE :

WRONG PATIENT NAME
WRONG MACHINE SITE

ESTS_ reMEDY:
INPUT CHECKING REQUIRES “SANITY” MODEL
CREATE ARCHIVE OF FULL-SESSTON TESTS
VALIDATE TESTS INDEPENDENTLY

SOFTWARE
RESERREH

TESTING EXPERT SYSTEMS QA-93-4

INCONSISTENT FACTS.

FAILURE MODE:
ATOMIC “FACTS” ARE NOT TRUE
“COMBINATIONS OF FACTS” ARE NOT TRUR

EXaMPILLE]

ACTUJAL FACTUAL DEFECT
INCORRECT FORMULA
INTERFACE ERROR

ESTS remeDy:
I AT LEAST ONE TEST MUST USE EACH FACT

100% ruLEe coverage (LR1)
AUTOMATED REGRESSION ON EXAMPLE SESSIONS

(’"r'_‘;\

TESTING EXPEZRT SYSTEMS QA-93-5

ERROR IN RULESET

FAILURE MODE:
MISSING, WRONG, EXTRA RULE
INCOMPLETE CONSISTENCY CHECKING
INCOMPLETE "EXPERT” UNDERSTANDING
FIRING ORDER DEPENDENCE
MISSING/INCORRECT DATA FLOW
esTIMATE: 20 neFecTs/KRuLR

EXAMPLE:
THE "FLYING ZEBRA"

ESTS. ReMEDY:
POSSIBLE FORMAL MANUAL INSPECTION
FULL PATH ANALYSIS APPEARS NECESSARY (LRT)
LR1 MAY BE AN EFFECT APPROXIMATION TO LRT

SOFTWARE
RES

r_‘ -)

| TESTING EXPERT SYSTEMS QA-93-6

INCORRECT REDUCTION

' FATLURE MODE:
RULES ARE CORRECT: FAILURE IN REDUCTINN
CONVENTIONAL SH STATISTICS APPLY

EXAMPLE !

MISSED RULE IN BACKTRACKING

ESTS. reMEDY:
USE COMMIRZIAL STS METHONS
ANALOGOUS TO COMPILER VALIDATION

SOFTWARE

TESTING EXPERT SYSTEMS QA-93-7

INVALID QUTPUT

FATILURE MODE:
INSUFFICIENT CHECKING OF RESULTS
SYSTEMIC FAILURE

EXAMPLE ;
MISSED DIAGNOSIS
INCORRECT CONFIGURATION

ESTS reEMEDY:
STRUCTYURIZATINN OF RULESET
PARTITIONING OF TESTING WITHIN ESTS

()

TESTING EXPERT SYSTEMS QA-93-%

COMMERCTAL SOFTWARE TEST .SERVICES (STS)

TURNKEY SERVICE STRUCTURE
CODE INSPECTION

SYSTEM INSPECTINN (INTERFACES)
TEST PLANNING & FUNCTIONAL TESTS
Cl coMmpLETION

S1 coMpPLETION

REGRE SSTON

COSTS
LOW RANGE
¢ 20 KLOC
NORMAL QUALITY CODE
$ 10K-$25K/KLOC
30-40 reporTs/KLOC
HIGH RANGE
> 40 KLOC
NORMAL TO LOW QUALITY CODE
$ 15K-$35K/KLOC
20-30 reporTs/KLOC

(

EXPERT SYSTEMS QUALITY CONTROL

TEST ENVIRONMENT FOR EXPERT SYSTEM

TEST SETUP
INDIVIDUAL TESTS
SCENARIOS
REPEATABLE
RANDOM INPUT

TEST OUTPUT ANALYSIS
HUMAN
REGRESSION BASE
ALTERNATIVE RULE SET

DEFICIENCY DETECTION MECHANISM
DEFICIENCY IN TESTS

DEFICIENCY IN RULESET
DEFICIENCY IN IMPLEMENTATION BASE

OTHER DEFICIENCY

QAT-92-3

4 ™\

EXPERT SYSTEMS QUALITY CONTROL QAT-92-2

QUALITY CONTROL ESTIMATES FOR EXPERT SYSTEMS
ORDINARY SYSTEMS

METRIC:

DEFECTS PER K LINES OF CODE

LIFE CYCLE ESTIMATES

DESIGN 5-20/xLoc 200-1
CODE 20-40/xLoc

TEST 20-30/kLoc 20-1
MAINTAIN 10-35/kLoc 10-1
LIFE CYCLE 10-80/kLoc 15-1

EXPERT SYSTEMS

METRIC:
PERCENTAGE OF DEFECTIVE RULES

LIFE CYCLE ESTIMATES

PROTOTYPE 2-57 400-1
FIRST RELEASE 1-2% 100-1
MAINTAIN 1-47 20-1
LIFE CYCLE 1-8% 30~1

{ GUIDELINES & RECOMMENDATIONS AT o\

ADVANCED- CONCEPT MINIMUM ACCEPTANCE CRITERIA

GOAL: MINIMUM ACCEPTANCE CRITERIA FOR SOFTWARE
AT THE UNIT LEVEL

© "BEAUTIFIED" SOURCE PROGRAM LISTING,
WITH IN-LINE COMMENTING

) OUTPUT FROM STATIC ANALYZER WITH EXPLANATIONS
AND SUPERVISOR APPROVAL FOR ALL DISCREPANCY
REPORTS

© OUTPUT FROM TEST EXECUTION VERIFICATION WITH
MINIMUM TEST COVERAGE GOAL MET, OR EXPLANATIONS
WITH SUPERVISOR APPROVAL FOR MISSED SEGMENTS

[OUTPUT FROM SOURCE CODE CONTROL SYSTEM SHOWING
SUCCESSFUL INTEGRATION OF UNIT WITH "SYSTEM"

Source: Dr. Bud Wonsiewiez, CompSAC 82,
November 1982.

SOFTWARE

O

O

(

PUBLISHED QA STANDARDS

FIPS PUB 101: INTEGRATED APPROACH TO VV&T

QAT-18-3

Page 1/2

VVa&T Test Data & Assertions \ \

Analyst Need for Need for
Additional Additional
Testing Analysis
Criteria —J —J
s =21 Static No Dynamic | No Formal S ﬁgn? Iys's-,
pecification A . . p—= Satisfactorily
—p=1 Analysis | Errors Analysis Errors Analysis Completed
Errors Errors Errors
Modify -
General VV&T integration strategy
Functional Traces to be Examined
for Correctness of Intent
VVaT Test Scenarios)
Analyst
Requirements Specification_ﬂ' Static- No Errors Found 1 dynamic Analysis
Analysis Analysis Completed

\.

Consistency

Detected Errors

b,

Modify

Integrated approach to requirements VV&T

Detected Errors

(SOFTWARE]

RESELREH

‘

O

PUBLISHED QA STANDARDS

FIPS PUB 101:

INTEGRATED APPROACH TO VVET

QAT-18-4

Page 2/2

VV&T Test .) -
Analyst Functional and Information About
Performance Numerical Properties,
Behavior Complexity, and Correctness
No
Errors No Errors
Design Specification Static | Found 1 Functionatl _Found "'Formal) Analysis
Analysis " | simutation " |Analysis
Consistency
Detected Errors Detected Errors Detected Errors
Modify
Integrated approach to design YV&T
ey

vvaT \ Test Cases/Data -y

Information About

Numerical Properties,
Complexity & Correctness

Formal Analysis
Analysis Completed

JDetected Errors

Differences

Analyst Between Actual &

Expected Outputs
No l ErTgrs

'_‘—IErrors
Code Static |Found Dynamic { Found
> Analysis Analysis
\/Gonsistency J
d Errors
Modify = Detected Efrors Detected Er

Imegmred appraach to code VVE&T

(SOFTWARE)

\RESERREH

e

—

PUBLISHED QA STANDARDS

FIPS PUB 101: RECOMMENDED APPROACH (BASIC)

Phase

Technique

Reguirements

Review

Design

Inspection

Code

Inspection

Test Coverage
Unit: 100% statement
Integration: 100% module call
System: 95% module call
100% of major logic paths

Installation

Acceptance Testing:
Insure continued validity of system test

Operations and maintenance

For affected code:

Inspection

Test Coverage:
100% statement
100% module

Recommended technigues for lifecycle VV&T (basic approach)

SOFTWARE
RIESIEARCR

QAT-18-5 }

(

PUBLISHED QA STANDARDS QAT-18-6 ?

FIPS PUB 101: RECOMMENDED APPROACH (COMPREHENSIVE)

Phase Technique '
Requirements Inspection
Design Interface Analysis
Data Flow Analysis
Code Assertions

Standards Audit

Interface Analysis

Data Fiow Analysis

Explicit Trace-back of Code to Requirements

Instailation Acceptance Testing

Operations and maintenance For affected code:
Reapply techniques used during development

Recommended techniques for VV&T (comprehensive approach)

Q.

r PUBLISHED QA STANDARDS T QAT-18-7)
FIPS PUB 101: RECOMMENDED APPROACH (CRITICAL)

Phase Technique
Requirements Automated Consistency Analysis
Design Automated Consistency Analysis
ﬁ Automated Simulation
Proof of Critical Sections
Code Symbolic Evaluation
Proof of Critical Sections or Properties
Installation Acceptance Testing:
System Certification
Operations and maintenance Re-do proofs that cover affected areas; retest

‘ Recommended technigues for VV&T for critical software

SOFTWARE

	QW01-TUT01
	QW01-TUT02
	QW01-TUT03
	QW01-TUT04
	QW01-TUT05
	QW01-TUT06

